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Abstract

The release of Intel SGX revived the interest in trusted computing across industry and
academia. Hardware is available, but usage patterns and applications are mostly missing.
This thesis evaluates trusted computing from the viewpoint of a software engineer. Hardening
strategies are identified in related work and applied in two case studies. The case studies
show how SGX can be used in practice. A small helper library is developed for rapid
prototyping. Other trusted computing solutions are compared to SGX and SGX is critically
evaluated based on current research.

Zusammenfassung

Die Veröffentlichung von Intel SGX hat das Interesse an Trusted Computing in Akademia
und Industrie wieder erweckt. Obwohl die Hardware verfügbar ist, sind Verwendungsmuster
and Anwendungen noch Mangelware. Diese Arbeit evaluiert Trusted Computing aus der
Sicht eines Software Ingenieurs. In verwandten Arbeiten werden Strategien zum Härten von
Anwendungen identifiziert und in zwei Fallstudien angewandt. Diese Fallstudien zeigen
wie SGX praktisch genutzt werden kann. Dabei wird eine kleine Hilfs-Bibliothek entwickelt.
Andere Trusted Computing Lösungen werden mit SGX verglichen und SGX wird mit Hilfe
aktueller Forschungsergebnisse kritisch bewertet.
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1. Introduction

Cloud computing has proven itself as a viable and popular business model. This makes data
security an increasingly hot topic. Encryption as a way of securely transporting data is an
age-old and proven concept. By comparison, techniques for secure data processing are still in
their infancy.

For some decades there have been niche solutions in this field called trusted computing.
They did not gain the traction and publicity they may have deserved. Among such solutions
are Trusted Platform Modules and ARM’s TrustZone security extensions. Now Intel has
joined the game and has been shipping its Security Guard Extensions (SGX) with many of its
new CPUs since end of 2015. The wide-spread availability of trusted computing hardware
is foreseeable. There is a growing demand for trustworthy applications in digital rights
management and cloud computing. This means the game might soon begin to change,
shifting trusted computing back into focus.

From a technological standpoint, trusted computing is fascinating. It combines the fields of
cryptography, operating systems and hardware design. However, from an ethical standpoint,
trusted computing is a double-edged sword as Figure 1.1 pointedly makes clear.

Figure 1.1.: Trusted computing cartoon. Left computer: “Do you also sometimes feel remotely con-
trolled by this trusted computing module?”. Right computer: “I don’t know, let me ask my
manufacturer.” Reprinted from [52].

Intel SGX, and with it the field of trusted computing in general, still has to pick up traction.
Yet the technology is ready for being used and evaluated today. A variety of research is
happening around SGX, and innovative use cases are popping up.
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1. Introduction

This thesis looks at trusted computing from a software engineer’s perspective. The goal of this
thesis is to show how a developer can harden his applications today, using the technology that
is available. The thesis is mainly made up of literature work. Techniques for secure remote
computation are described, among them trusted computing (chapter 2). A wide variety of
trusted computing solutions is then surveyed and systematically compared (chapter 3). Both
commercial solutions and research work are included.

Intel SGX is chosen as the prime candidate for a more detailed evaluation (chapter 4). The
SDK provided by Intel is presented along with a small helper library that was developed
as part of this thesis (chapter 5). Architectural design patterns for hardening applications
are identified in the related work (chapter 6). Two case studies show how database software
– representative for the class of hosted applications – can be hardened using Intel SGX
(chapter 7, chapter 8). These case studies use the patterns and techniques found in related
work.

While SGX is an exciting technology that is in many regards better than previous solutions,
it is far from perfect. Criticism and security issues are also presented.

The source code for this thesis – including all text, images and code snippets – is available
at https://github.com/ftes/sgx-thesis.

2
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2. Background

Nowadays, data is oftentimes not stored – and applications are not executed – locally (on
premise) any more. Rather, these tasks are outsourced to hosted, remote infrastructure. In
addition, computer technology is becoming increasingly pervasive in our lives. More data is
stored on and processed by computers, making them ever more valuable targets.

1. input 3. store

4. process

5. store7. output

Client Server

2. transmit

6. transmit

Figure 2.1.: Focus of this thesis within the data life cycle. Transmitting and storing data can be
secured using encryption (green). The applications examined in this thesis deal with processing
data (red). This is an area of active research.

The state of the art is to protect sensitive data by encrypting it while it is at rest or being
transmitted. This is shown in Figure 2.1. Protecting the processing stage is an active field of
research called secure remote computation.

Figure 2.2 gives an abstract overview of the entities and steps involved in secure remote
computation. For the sake of this thesis, the most interesting part of the picture is the
implementation of the container.

Arasu et al. categorise the approaches for constructing such a container that can protect
code and data on a remote computer:[3, p. 19]

Compute on encrypted data The data remains encrypted during processing. Thus the results
are also encrypted. In this case the cryptographic scheme is the container. No infor-
mation about the plain text should be leaked. section 2.1 explains which encryption
schemes support this.

Decrypt and process data in a secure location Such a location could be a local machine, dis-
connected from the internet, or a remote trusted hardware component such as a secure
co-processor. Whether or not a location is deemed secure is a subjective decision. This
variant of implementing the container is called trusted computing.
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2. Background

Remote Computer

Untrusted Software

Trusted Execution
Environment

Private Code

Private Data

Data Owner’s Computer

Setup

Verification

Computation Dispatcher

Data Owner Infrastructure OwnerSoftware Provider

Setup Computation

Receive Encrypted Results

Trusts, Owns Manages

Authors

Trusts

Figure 2.2.: Secure remote computation. The data owner trusts the software provider but not the
infrastructure owner. The code and data within the trusted execution environment (green) must be
protected. There are different options for implementing this protection. Reprinted from [15].
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2.1. Cryptography

The remainder of this chapter explains the fundamental concepts of both these approaches.
Implementations of the first approach are presented later on in section 6.1. Implementations

of trusted computing are described and compared in chapter 3. Intel SGX – a particular
commercial solution for trusted computing – is described in more detail in chapter 4.

2.1. Cryptography

There are several different ways in which cryptographic principles can be used to implement
the concept of a secure container.

Multi party computing Several parties jointly compute a function to which every party pro-
vides some input. The input of each party is not revealed to any of the other parties.
One early implementation is Yao’s garbled circuits.[27] For secure remote computation,
we could assume two parties, where only the data owner provides an input and only
the infrastructure owner executes the function. However, the function output is in plain
text which is not desirable for secure remote computation in general.

Verifiable computing This is a first step in the direction of secure remote computing. It
ensures the integrity but not the confidentiality of the computation (similar to a crypto-
graphic signature).[23, 36, 61]

Homomorphic Encryption Such encryption schemes define calculation operations on en-
crypted data. The operands and result of these calculations remain encrypted so
they could be performed by an untrusted third party. Figure 2.3 explains the principle
of homomorphic encryption with an example. While partially homomorphic schemes
define only one operation (e.g. either addition or multiplication), fully homomorphic
schemes define both.

Gentry et al. successfully constructed the first fully homomorphic scheme in 2009.[24]
Figure 2.4 shows the relationship between different encryption schemes and the opera-
tions they support. These schemes are revisited in section 6.1, which also shows how
they can be practically put to use.

State of the art fully homomorphic schemes still suffer from an intractably high over-
head. Partially homomorphic schemes on the other hand have already been applied to
databases.[8, 3]

Encryption schemes in themselves also do not help verify what computation took place.
Combining encryption with verifiable computation approaches or software attestation
may provide a solution.

Encrypted CPU Given a (fully) homomorphic encryption scheme it is possible to execute
entire encrypted programs. This is possible in a fully oblivious fashion where both the
instruction flow and memory access (code and data) remain hidden. Both obliviousness
and the current fully homomorphic encryption schemes incur such large performance
penalties that they are not yet practically useful for more complex programs.
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2. Background

5 4 19 13

+
⊕

69

Plaintext Encrypted

Data Owner Processing Provider

encrypt

decrypt

Figure 2.3.:Homomorphic encryption example. A homomorphic encryption scheme defines opera-
tions on encrypted data. The decrypted result of the encrypted addition (

⊕
) gives the same result

as performing a plain text addition (+). Using this scheme an untrusted processing provider can
perform calculations without learning anything about the plain text.

order-preserving (≥)

deterministic (==)

fully homomorphic

Paillier [45] (+) ElGamal [20] (×)

non-deterministic (∅)

partially homomorphic

Figure 2.4.: Encryption schemes and their relationships. The shading indicates computational effi-
ciency (red: impractical, orange: expensive, green: practical). Arrows indicate subsumption of
functionality. Fully homomorphic schemes for example provide both + and × operations (and by
extension – e.g. an encrypted CPU – also comparison operations). Reprinted from [3].
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2.1. Cryptography

The encrypted CPU works very much the same as a regular CPU, as can be seen in
Figure 2.5. A regular CPU operates on bits using logical gates. The encrypted CPU
operates on encrypted bits. Each bit is represented by cipher value of n bits size so
that there are 2n−1 possible representations for 0 and 1 respectively. Logical gates are
emulated using the fully homomorphic operations on these cipher values (addition and
multiplication).[11]

Memory
Cell Array

data-out

ro
w

-in

ALU

Program
Counter

Command
Register

Accumulator

ALU

Data
Register

FlagsALU

1

ALU

data-in

w

Figure 2.5.:Encrypted CPU schematic. This is a classic von-Neumann architecture where the memory
holds both the instructions and data. Bits are represented as encrypted numbers. Reprinted from
[10].

Both code and data reside in the encrypted memory. This means that code and data
remain secret at all times.

The circuit evaluation provides obliviousness as the entire circuit must always be solved.
For example, on memory accesses each cell is reassigned – either with its new value
on a write, or an equivalent representation of its old bit value. This obliviousness is an
important security factor and a performance pitfall at the same time. Memory access
patterns and program flow are kept secret. This however also means that access times
grow with the memory size. The authors state that “compact programs and data are
the key to tolerable runtimes”.[9]

A hardware implementation of the encrypted CPU has not yet been attempted due to
various challenges such as super-wide buses and the recrypt procedure necessitated
by the encryption scheme. A software implementation highlights the performance
problems. Without encryption, a CPU cycle is simulated in 3ms. With encryption this
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2. Background

value increases to 166s. 1 Both values are obtained for 256 memory rows – at 13bit per
row this gives roughly 0.4kB of memory.2[9]

Fully homomorphic encryption adds another tool to a cryptographer’s toolbox: The ability
to compute on encrypted data. The concept of an encrypted CPU builds on top of this
primitive. It shows how a encrypted program with branching can be executed on encrypted
data.

The performance of fully homomorphic schemes is still far from being practically applica-
ble. Through the oblivious full-circuit evaluation of the encrypted CPU this issue is amplified.
However, improvements are possible on several avenues: New, more efficient fully homomor-
phic schemes may be devised. The existing schemes can be optimised both in their algorithm
and in their implementation (e.g. parallelised). Hardware implementation of the encryption,
and especially the encrypted CPU also has large potential benefits.

Yet even a sufficiently efficient encrypted CPU could not solve secure remote computation
once and for all. Firstly the computation is restricted to a single client. Without decrypting the
results (in a trusted location) no communication and interaction between clients is possible.
Secondly the problem of attestation is not solved by this approach.

2.2. Trusted Computing

This section defines terms important for trusted computing. These are most relevant for
chapter 3.

Root of trust is the sole element on which trust in a platform hinges. If the root of trust
is compromised, the whole platform is compromised.[21] For example, the CPU in a
trusted computing setup could be the root of trust that is expected to function correctly.

Trusted computing is a form of secure remote computation that uses trusted hardware as the
root of trust.[21] Figure 2.6 shows the involved components and trust relationships.

Trusted Execution Environment (TEE) protects its assets (such as code and data) from attacks.
It usually exists alongside the standard Rich Execution Environment (REE).[25] The
TEE is at the very heart of a trusted computing implementation as shown in Figure 2.6.
This section describes different TEE implementations.

Trusted computing base (TCB) is best described by the Orange Book: The TCB “contains all
of the elements of the system responsible for supporting the security policy”.[18] This
includes the root of trust, the application itself, and all intermediate software levels that
have to be trusted. Anything outside of the TCB does not have to be trusted. The TCB
should be as small and simple as possible for the sake of security.[18] Depending on

1This is the measurement for the highest value of the security parameter lambda. Unfortunately, neither Brenner
et al. nor Smart et al.[55] give further details on how the security parameter relate to a comparable security
level. The BSI advises a security level of 120bit from the year 2022 onwards: https://www.bsi.bund.de/
SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf.

2A memory word contains 8bit of data and a 5bit command.[11]. This design decision reduces the number of
costly memory access cycles.
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2.2. Trusted Computing

the trusted computing solution the TCB may contain the operating system and/or the
hypervisor.

So�ware Attestation is a two-part process. First a loaded piece of software is measured
to ensure that the system is in a well-defined state. Secondly, this measurement is
cryptographically signed and transmitted. This protocol can be enriched to include a
key exchange. This makes it possible to securely communicate with the attested code.
The process is described well in [15].

Data Sealing is a process of storing data so that it can only be accessed by a component in
a certain state. For example, bank account credentials could be sealed so that they can
only be read by a certain operating system at a certain patch-level.[21]

Technically, this is usually achieved through key derivation. The root of trust in a
system may have a secret key. From this key, with the measurement result of software
attestation, a state-specific data sealing key is derived. The data is then encrypted with
this key.

9
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Remote Computer

Trusted Hardware

Untrusted Software

Trusted Execution
Environment

Private Code

Private Data

Setup

Verification

Computation Dispatcher

Data Owner’s Computer

Data Owner Infrastructure OwnerSoftware Provider Manufacturer

Setup Computation

Receive Encrypted Results

Trusts, Owns Manages

Builds

Authors

Trusts

Trusts

Figure 2.6.:Trusted computing. The trusted execution environment is protected by trusted hardware.
This introduces an additional trust relationship. Additional nodes (compared to Figure 2.2) are in
bold font. Reprinted from [15].
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3. Trusted Computing Solutions

As explained, trusted computing is a variant of secure remote computing built on trusted
hardware. This chapter first defines metrics for classifying trusted computing implemen-
tations. Commercially available solutions and solutions from research are then described
qualitatively. Finally, a more quantitative comparison is given in form of a table. It uses the
defined metrics as the main criteria.

3.1. Classification

The following dimensions are used to classify the solutions presented in the remainder of
this section:

Hardware implementation (if present). Figure 3.1 shows a variety of approaches ranging
from external to on-chip solutions as defined by the GlobalPlatform alliance.[25] Using
hardware virtualisation techniques is a fourth option used in some solutions.

Isolation level at which the TEE protects the components. Figure 3.2 shows the five predom-
inant isolation levels. These levels can be observed repeatedly when evaluating the
trusted computing implementations presented in this thesis.

3.2. Commercial

The following list of commercial trusted computing solutions gives a good overview of how
the field has evolved in the past 15 years. The list is not exhaustive. Instead, the chosen
solutions represent noteworthy archetypes.3 For a more extensive list, see [19].

2002: Trusted PlatformModule (TPM)4 is a separate component in a computer system that
can be used for various cryptographic and attestation tasks.[59] It can be classified
as a external secure element (Figure 3.1) that can – with different means – provide a
variety of isolation levels (Figure 3.2). The TPM must maintain a separate state which
cannot be tampered with. For this reason, TPMs are usually dedicated hardware chips.5

3The most noticeable omission from this list are all kinds of cryptographic co-processors that aim to provide
significant computational resources apart from the main CPUs. Any operation in excess of cryptographic
primitives such as key generation and digital signatures is considered significant.

4TPM hardware first became available for the revision 1.2 of the TPM specification. This was published
in 2003: https://trustedcomputinggroup.org/wp-content/uploads/tpmwg-mainrev62_Part1_Design_
Principles.pdf. Later, in 2009, the TPM specification was ISO standardised: https://www.iso.org/
standard/50970.html
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3. Trusted Computing Solutions

RAM
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a) External secure element

RAM

ROM
Internal

peripherals

Processing
core(s)

SoC

External
memory

External
peripherals

On-SoC security subsystem

b) Embedded secure element

RAM

ROM
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c) Processor secure environment

Figure 3.1.: Implementation alternatives for protecting a Trusted Execution Environment (TEE) as
defined by the GlobalPlatform alliance. The logic necessary to protect the TEE lives in nodes
shaded green. It can either reside outside of the System on a Chip (SoC) as in a), or as a part of the
regular SoC components as in c). Reprinted from [25].

Boot loader

Host Operating System

Hypervisor

Guest Operating System

Application

Module a) Module

b) Application

c) Operating system

d) Virtualisation Stack

e) Entire software stack

Figure 3.2.: Possible levels of isolation a Trusted Execution Environment (TEE) can provide. a) – e)
represent the five predominant levels in the evaluated trusted computing solutions. Virtualisation is
not employed by all solutions, therefor the host operating system and hypervisor are printed in grey.
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3.2. Commercial

A TPM has an embedded secret key used to sign its outputs, e.g. when supplying
system measurements. This secret key is certified by the manufacturer to establish its
authenticity.[58]

TPMs can be used to measure the state of the entire system. This can be done in a static
fashion, starting from the boot loader, as shown in Figure 3.3. The TPM can also provide
a dynamic measurement. This is done when software such as a hypervisor is elevated
into a super-privileged virtual machine management (VMM) mode. Performing a
dynamic measurement requires CPU support.6 See section 3.3 for details on how
TPMs can also be used to provide isolation for components on levels smaller than the
virtualisation stack layer (a-b in Figure 3.2).

hash( )

Boot loader

hash( )

0 (zero)

hash( )

Kernel

hash( )

. . .
hash( )

Application

hash( )

Figure 3.3.: Static system state measurement using a Trusted Platform Module (TPM). The TPM
stores the measurement in a register (register values are shaded green). At reboot, the measurement
register is reset to zero. Then "the software at every boot stage hashes the next boot stage".[15] This
hash is sent to the TPM, which updates the measurement register by hashing both the old register
value and new measurement. Reprinted from [15].

TPMs are not ideally suited for securing individual applications:

• TPMs do not isolate processes. Apart from trusted cryptographic functions they
only provide a measurement of a software state. Isolation must be implemented
in software. This is susceptible to privilege escalation. Also, this is an additional
development and/or maintenance overhead.

5[49] describes a software TPM implementation using TrustZone. The TPM state is protected in the secure world.
6The technologies of the two major vendors are Intel TXT and AMD SVM.
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3. Trusted Computing Solutions

• System components that must be trusted include the system bus and main mem-
ory.[35] A TPM can therefore not protect secrets from any party that has hardware
access, and might e.g. read main memory.

2003: ARM TrustZone7 is an optional extension to the ARM CPU specification. It can be
classified as a processor secure environment (Figure 3.1) that provides isolation at
the application level (Figure 3.2). A TrustZone-capable system can be described as
having a split personality. It runs in either the normal world or the secure world,
indicated by an extra bit on the system bus.[4] Other hardware components use this
bit to implement access restrictions. For example the memory management unit does
not allow access to pages that belong to the secure world while running in the normal
world. A special instruction, the secure monitor call, lets the system switch worlds by
executing the monitor code which was defined during system start up.

The distinction between normal and secure world is orthogonal to the regular privilege
levels (user and kernel mode) as shown in Figure 3.4.

Generic Ap-
plication

Security client

Scheduler TrustZone driver

Security Service
Standalone
Application

Inter-world
IPC manager Scheduler

Monitor

Normal world Secure World

Kernel Kernel

User
Privileged

Interrupt

Secure Mon-
itor Call

Figure 3.4.: Example secure world implementation using ARM TrustZone technology. The system
boots in secure mode and a monitor is registered which acts as the interface between secure
and normal world. The secure word has its own kernel which must handle process isolation.
Applications in the normal world can indirectly access services in the secure world through a secure
monitor call. Reprinted as a simplified version from [4].

The figure also shows that interrupts are first handled by the monitor. Devices can thus
be mapped to either of the two worlds, or both. If a device, e.g. a keyboard, is mapped
to the secure world it is possible to provide trusted input that cannot be tampered with
by the normal world. If a device is mapped to both worlds (such as main memory) then
the device controller must enforce the access restrictions (e.g. by keeping track of which
world a memory page is assigned to via the page table).

7https://www.arm.com/about/newsroom/3791.php
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3.2. Commercial

TrustZone is a very flexible hardware concept. In its documentation, ARM proposes to
implement two worlds with separate kernels. Samsung Knox on Android phones is a
good example. Knox provides attestation capabilities and sets up an isolated workspace
environment, which is completely separated from the regular environment.[50] As the
hardware imposes no limits on how it is used, it is also possible to implement deviating
concepts such as a firmware TPM.[49]

Attestation is not part of the TrustZone specification. However , approaches such as
the firmware TPM show that this concept is easy to implement using TrustZone. The
hardware root of trust is present. All that is needed in addition is a secret key only
accessible by the secure world. TrustZone is – by itself – not strictly a trusted computing
solution as a remote party cannot verify the state of the secure world. It is still included
in this list because it can serve as a hardware basis to implement fully-fledged trusted
computing solutions.

While TrustZone is flexible, it is not ideally suited for securing applications in a general
fashion due to the following reasons:

• TrustZone isolates worlds, but not processes within the secure world. All appli-
cations that should be protected live together in the secure world. It is solely the
responsibility of the Kernel to isolate the processes in the secure world. The data
in the secure world is thus susceptible to be compromised via privilege escalation
of the secure kernel.

• To isolate applications on TrustZone hardware, a monitor and secure kernel are
needed. This is additional development overhead (or at least maintenance over-
head8).

• The TCB is far larger than the security critical parts of the application that should
be hardened. It includes the boot loader, monitor, secure kernel and all other
applications running in the secure world.

2015: Intel So�ware Guard Extensions (SGX)9 is an instruction set extension with which pro-
tected memory regions, called enclaves, can be set up. An enclave is a TEE for a single
software module. It can be classified as a processor secure environment (Figure 3.1) that
provides isolation at the module level (Figure 3.2). It is orthogonal to existing protection
mechanisms such as virtual memory or privilege levels. Enclaves are protected from any
external access not allowed by their interface definition, be it by the operating system
or an administrator with hardware access.[42] Like a TPM, an SGX-enabled CPU has
an embedded secret key so it can provide signed measurements of an enclave’s state to
third parties.[34] SGX is explained in more detail in chapter 4.

SGX is well-suited to secure applications:

• SGX isolates at the module level. The TCB consists of only the module code.

8https://github.com/ARM-software/arm-trusted-firmware
9https://software.intel.com/en-us/sgx
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• No hardware apart from the CPU must be trusted. Memory is encrypted when
stored in RAM.

2016: Windows Isolated User Mode (IUM)10 is a secure execution mode similar to the secure
world in TrustZone. It uses virtualisation (not shown in Figure 3.1) and provides isola-
tion at the application level (Figure 3.2). The kernel and processes in secure mode are
separated from normal mode by the Hyper-V hypervisor.11 Unlike TrustZone and the
other technologies in this list, IUM is implemented in software – not considering CPU
virtualisation support. IUM is used to secure credentials in the Windows Credential
Guard.12.

IUM has limited potential for securing applications:

• The TCB size is large. It includes the hypervisor, secure kernel and application.

• Data in the isolated mode can be compromised via privilege escalation of the
secure kernel.

• Microsoft has not yet published any information on how to develop applications
for IUM. It seems that for now it is used for internal Windows functionality such
as Credential Guard only.

• As a software-only solution, no hardware root of trust is present. Windows IUM
does not provide attestation. Strictly speaking it does not match the definition of
trusted computing used in this thesis. IUM is still listed, as it is comparable to
many of the solutions from research.

3.3. Research

Trusted computing solutions from the research community are now introduced in detail.
Where possible, similarities to the commercial solutions are pointed out. The solutions are
grouped by isolation level (Figure 3.2). The order of the following solutions is the same as in
Table 3.1, which gives a high-level comparison.

3.3.1. Module Isolation

Sanctum[16] Sanctum is comparable to Intel SGX in both implementation and features. As
the authors themselves state, it “draws heavy inspiration” from SGX. It was designed
by Costan and Devadas, who also reverse-engineered and documented many details
of SGX.[15] Sanctum tries to improve on SGX. It protects against software attacks that
analyse a program’s memory access patterns.

The implementation is less invasive than SGX, as it only “adds hardware at the interfaces
between building blocks” instead of modifying them directly. Sanctum isolates enclaves

10https://msdn.microsoft.com/en-us/library/windows/desktop/mt809132(v=vs.85).aspx
11https://channel9.msdn.com/Blogs/Seth-Juarez/Isolated-User-Mode-in-Windows-10-with-Dave-Probert
12https://docs.microsoft.com/en-us/windows/access-protection/credential-guard/

credential-guard

16

https://msdn.microsoft.com/en-us/library/windows/desktop/mt809132(v=vs.85).aspx
https://channel9.msdn.com/Blogs/Seth-Juarez/Isolated-User-Mode-in-Windows-10-with-Dave-Probert 
https://docs.microsoft.com/en-us/windows/access-protection/credential-guard/credential-guard
https://docs.microsoft.com/en-us/windows/access-protection/credential-guard/credential-guard
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by virtually partitioning the DRAM into “regions that use disjoint Last Level Cache
(LLC) sets.” The page walker then enforces the access rules as known from SGX.

The hardware additions are complemented by a security monitor. It is small enough to
be formally verified. The monitor is responsible for handling “DRAM region allocation
and enclave management” and protects sensitive registers.[16]

Without going into too much detail, Figure 3.5 shows how similar Sanctum’s enclave
and thread management are to SGX.

a) Enclave state diagram

non-
existent

loading initialized
create enclave init enclave

load page enter enclave

delete enclave

free initialized running

b) Enclave thread state diagram

load thread

create thread

delete thread

exit enclave

enter enclave

asynchronous en-
clave exit (AEX)

resume thread

Figure 3.5.: State diagrams for enclave and thread state in Sanctum. The states and transitions are
very similar to those in SGX since Sanctum’s design was largely inspired by SGX. Reprinted from
[16].

TrustZone Trusted Language Runtime (TLR)[51] implements a .NET runtime that is isolated
in TrustZone’s secure world. Security critical parts of an application can be extracted
into “trustlets” (similar to enclaves in SGX) which are executed within the TLR.

Apart from TrustZone as hardware the TCB includes the TLR implementation. As with
all solutions with a software TCB at level c or broader, TLR is susceptible to privilege
escalation if the TLR is compromised.

Though TrustZone could support trusted I/O, this feature is not available in the TLR, as
it would require adding drivers to the TCB. TLR does not provide attestation. A remote
party cannot verify the state of trustlets and the runtime it is interacting with. Thus,
TLR does not strictly match the definition of trusted computing used in this thesis. It is
listed as its implementation is interesting and comparable to other solutions.
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Oasis[44] is comparable to SGX but avoids encrypting memory in DRAM. The concept
hinges on using caches as RAM so that secrets never leave the CPU, e.g. are never
stored on DRAM. To this end, Oasis adds a set of CPU instructions to “enable an
isolated execution environment contained entirely on chip”. As the authors themselves
remark, Oasis is inferior to SGX in that it only supports applications of a very limited
size.

Fides[57] uses a “small dynamic hypervisor to isolate [enclaves]” from the rest of the system.
The hypervisor separates two virtual machines (VMs): the legacy and secure VM,
similar to TrustZone. A minimal secure kernel isolates the different enclaves (called
“self protecting module (SPM)”) in the secure world.

The software TCB includes the hypervisor and secure kernel. A TPM is used to attest
the hypervisor and security kernel state. The legacy kernel is excluded from the TCB.
The “running legacy kernel is pulled in the legacy VM, and memory access control
of both VMs is configured”. This is possible using the dynamic TPM measurement
features.

Attestation and data sealing are only available on the basic TPM level, which is bound
to the overall system state. This means the hypervisor and secure kernel can be attested,
and data can be sealed to this state. This cannot be done for individual modules.

TrustVisor[40] was developed by the authors of Flicker, with the goal of improving perfor-
mance. It avoids slow TPM calls on the critical path by providing a virtual micro-TPM
to each enclave (called “piece of application logic (PAL)”). With this micro-TPM, each
enclave can be attested and perform data sealing.

The micro-TPMs are hosted by a trusted hypervisor, which is dynamically loaded and
measured (as done by Fides). Thus the software TCB includes the hypervisor. The chain
of trust when validating an enclave attestation is rooted in the TPM measurement. The
chain thus includes the enclave, the micro-TPM and the hypervisor.

Unlike Fides, there is no secure kernel that isolates enclaves. This behaviour is emulated
on a lower level by un-mapping enclave pages from the legacy operating system. Each
enclave has its own virtual guest memory. Table 3.1 shows the software TCB as d, when
really it only includes the hypervisor and enclave, but no operating system.

Flicker[41] enables fine-grained attestation and isolation of enclaves using only the dynamic
attestation feature of a TPM and a supported CPU.

The intended use of the dynamic TPM measurement is to virtualise an untrusted oper-
ating system after booting it and lazily loading a privileged hypervisor (as described
for Fides). To do so, the CPU enters a special execution mode to load the hypervisor
with elevated privileges. During this time the legacy operating system is suspended.
Its privileges are demoted to VM guest privileges. This way the untrusted operating
system is effectively removed from the TCB.

18



3.3. Research

Instead of loading a hypervisor Flicker executes the enclave during this special loading
phase, which is called a “Flicker session”. This session is also measured. After a cleanup
phase (e.g. caches) regular execution is resumed and the result is returned.

This approach is nearly feature complete with regards to Table 3.1. It isolates enclaves
on the same level as SGX. The hardware TCB only includes the TPM. The software
TCB includes the enclave and only a small additional wrapper for handling parameter
input/output and cleanup.

The main drawback of the approach is the performance. Slow TPM operations are on
the critical execution path – they are executed every time the enclave is executed. Only
one core is used and interrupts are disabled in the special CPU state. Thus the system
is stalled for the duration of a Flicker session. For use in interactive systems, Flicker
enclaves need to exhibit a very small runtime. This is diametrically opposed to TPM
overhead incurred with each session. Only one Flicker session can be executed at any
given point in time, as the special CPU mode is not intended for parallel use.

In summary, despite the apparent features and small TCB, Flicker is not well-suited for
general-purpose applications due to its performance limitations.

3.3.2. Application Isolation

Microso� Haven[8] uses SGX to isolate an entire legacy application within an enclave. Along
with the application, a library operating system (Drawbridge LibOS13) is included in
the enclave. “Drawbridge LibOS is a version of Windows 8 refactored to run as a set of
libraries within the picoprocess.”14

An additional shield module within the enclave mediates between the library operating
system and the outside world (untrusted runtime). Any system call by the application
is passed through the library operating system, secured by the shield module, and only
then passed on through the untrusted runtime on to the untrusted operating system.
The layers are depicted in Figure 3.6. This approach is re-visited in section 6.2 in the
context of SCONE.[5]

Haven re-purposes SGX in a fashion. SGX was designed to isolate small security-critical
parts of an application inside individual enclaves. This keeps the TCB small and can
help when reasoning about security of the application. Haven tries to find a different
solution to secure unmodified legacy applications.

This dramatically increases the size of the TCB but also provides additional benefits.
The application must not be refactored or modified. In addition it protects against
so-called Iago attacks by the operating system. A Iago attacks exploits the fact that an
application may rely on a system call to be correctly executed instead of validating the
results.

13https://www.microsoft.com/en-us/research/project/drawbridge/
14A picoprocess can interact with the operating system only through a very narrow system call interface. This is

similar to the system call interface that hardware VMs use.
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Application
(unmodified binary)

Windows 8 API

Library
Operating System

Picoprocess API

Shield Module
(scheduling, file system etc.)

Enclave

Untrusted interface

Untrusted wrapper

Picoprocess

Picoprocess API, SGX calls

Host kernel

Figure 3.6.:Architecture of Microsoft Haven. The enclave (shaded green) isolates the entire unmodi-
fied application as well as a library operating system. Together with the shield module this protects
the application from attacks by a malicious operating system. The enclave interacts with the host
kernel through a the narrow picoprocess API, as the library operating system abstracts from higher-
level system calls. The untrusted wrapper only passes on calls from and to the enclave. Reprinted
as a simplified version from [8].
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Haven is dated to 2014 and requires SGX, which is dated to 2015. Haven was imple-
mented using SGX simulations and pre-release hardware before SGX-enabled CPUs
became generally available.

Minibox[39] is comparable to TrustVisor, as it multiplexes the TPM into several virtual micro-
TPMs. Minibox has a slightly different focus, as it aims to be a “two-way sandbox”.
Traditional sandboxing protects the execution environment, e.g. the operating system,
from malicious applications. Minibox protects both the operating system and the
application. Minibox executes applications in an isolated environment, called “Mutually
Isolated Execution Environment (MIEE)”.

A hypervisor provides isolation and the micro-TPMs. It is included in the TCB. The
micro-TPMs enable data sealing and attestation on a per-application basis. A shield
module in between checks and sanitises interaction in both directions.

InkTag[29] isolates applications in the same way as many other solutions in this section:
through virtualisation. This is similar to Windows IUM. A hypervisor isolates the
application, called “high-assurance process (HAP)”, from the operating system. The
hypervisor provides “secure files”, which can be seen as a form of data sealing.

InkTag does not provide attestation, so a remote user cannot verify the state of the
system. With regards to the definition used in this thesis, it is therefor not strictly
a trusted computing solution. Technically, it is interesting and comparable to other
solutions and thus listed.

A distinguishing feature of InkTag is its “para-verification”. The InkTag hypervisor
verifies the behaviour of the operating system. HAPs can check the verification status
using hypercalls. To keep verification simple, InkTag requires the untrusted operating
system to assist the hypervisor in its own verification.

Another interesting aspect is how isolation is technically achieved. InkTag does not
rely on memory address translation as a hardware feature alone to isolate an HAPs
memory. Instead, the hypervisor encrypts and hashes a HAPs memory pages on a
context switch back to the operating system. This is somewhat comparable to SGX,
where pages in DRAM are also encrypted. To describe it in the author’s words: “InkTag
uses hardware [memory management unit (MMU)] virtualisation for coarse-grained
separation between secure and insecure data. Then it uses software only when needed,
to manage the userspace portions of HAP page tables.”

Overshadow[14] is comparable to InkTag. A hypervisor isolates applications. The implemen-
tation differs. Overshadow uses the terms “shadowing” and “cloaking”. Memory is
dynamically encrypted (cloaked) by the hypervisor depending on the “shadow context”
accessing it. Only a cloaked application can read its own memory in decrypted form.

The hypervisor intercepts some system calls instead of passing them on to the untrusted
operating system, such as file input and output. Files accessed by applications are
memory-mapped. With the cloaking mechanism in place they are thus automatically
encrypted when written to disk.
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The idea of transparently encrypting file input/output is similar to Haven, where
unmodified applications are protected. Overshadow also tries to set a low adoption
barrier by minimising necessary changes to legacy applications.

The hypervisor has a single secret key which it uses for memory encryption. The key is
also used to e.g. protect file meta data integrity when written to disk. This is somewhat
similar to the memory integrity protection performed by SGX. However, SGX derives
a unique key for every enclave (or enclave author). The file encryption in Overshadow
cannot be counted as data sealing, as the data is not sealed to a specific application but
encrypted with the “global” hypervisor key.

Like InkTag, Overshadow does not provide attestation and is, strictly speaking, not a
trusted computing solution.

3.3.3. Operating System Isolation

CloudVisor[65] provides trusted VMs. VMs are an established deployment level in cloud
environments. Users typically trust the cloud provider to execute a VM properly and
properly isolate it from other VMs. This trust is not technologically grounded.

CloudVisor provides trusted VMs based on two factors. Firstly, VMs are protected from
the hypervisor. This is implemented through nested virtualisation. A small security
hypervisor in host mode controls the actual hypervisor. The security hypervisor is
comparably small. It is dynamically loaded and attested through the TPM. It thus does
not contain boot loader code. This reduces the size of the TCB. Secondly, the state of
the security hypervisor can be remotely attested. A TPM is used for this. A user can
then choose to release a VM image decryption key only to an attested hypervisor.

As for all trusted computing solutions that isolate on the virtualisation layer, the attack
surface is large. If the guest operating system in a VM is compromised, all sensitive
applications in that VM are compromised. Privilege escalation is also an issue. Also,
CloudVisor does not protect against hardware attacks. Any party with hardware access
can read the non-encrypted memory from DRAM (by tapping into the memory bus).

CloudVisor transparently inputs disk input/output. The data is not sealed to the VM
state, but encrypted with a user-defined key. Only the hypervisor state can be attested,
not the state of an individual VM.

Nova[56] is a micro-hypervisor, implemented from scratch. Using the same design principals
as for micro-kernels, the Nova hypervisor is highly modularised. Its design follows the
principle of least privilege. Only the bare minimum of Nova runs at the super-privileged
VMM kernel level.

Nova is not a trusted computing solution. However, it showcases the principle of least
privilege. This should be kept in mind when developing applications from Intel SGX.

NoHype[37] provides virtualisation without a hypervisor. Instead, resources are statically
allocated: Each VM is allocated one CPU core and a slice of memory. However, VM
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management must still take place. NoHype uses a management VM to load, start and
stop other VMs. During execution, no interaction with a hypervisor is necessary.

NoHype does not run on standard hardware. It requires additional hardware virtuali-
sation features that no CPU currently offers. NoHype limits a guest VM to a single core.
It can parallelise across VMs, but not within VMs.

NoHype addresses VM isolation, but no further features such as data sealing or attes-
tation. As attestation is not provided, NoHype is not a trusted computing solution as
defined in this thesis. It is still listed due to its interesting approach.

vTPM[46] provides a virtual TPM to each VM. This TPM is designed to match the VM life
cycle. It can be stored, loaded and migrated with its VM. The VM attestation provided
by a virtual TPM is a compound attestation. The virtual TPM attests the VM. The
hardware TPM attests the hypervisor and boot process.

TrustVisor and Minibox provide virtual TPMs at the module and application level.
vTPM provides virtual TPMs at the VM level.

An interesting aspect is how migration is enabled. The virtual TPMs have to be linked
to the hardware TPM so that the process is rooted in a hardware root of trust. If
implemented naively, this would preempt the ability to later on migrate a virtual TPM
to a different machine with a different hardware TPM. vTPM solves this using migrate-
able TPM storage keys, which the TPM standard defines.

Terra[22] is the first hypervisor-based solution for trusted computing. It introduced the idea
of using a trusted hypervisor to isolate individual VMs. In its design, Terra – like vTPM
– uses a hardware device for data sealing and attestation. It then exposes these features
to every VM. The Terra prototype does not actually include such a hardware device.
The authors identify a TPM as a good candidate.

3.4. Comparison

Table 3.1 shows a comparison of all trusted computing solutions presented so far. The table
groups solutions by the TEE level they expose. Solutions with TEE level a allow the developer
to isolate separate modules of his application. The narrower the TEE level of isolation is, the
smaller the isolated parts can be. This makes them easier to verify and less likely to contain
security bugs.

The TEE level controls the flexibility and ease of adoption. A broader TEE level may
be more insecure, but can facilitate re-use of unmodified VMs or applications. Potentially,
solutions higher up in the table can also emulate broader TEE levels. Haven shows how SGX,
which isolates at module level, can be used to isolate an entire application including a library
operating system.

Most solutions expose a narrow TEE level at the cost of a larger software TCB. TLR includes
the secure kernel and .NET language runtime. Fides and TrustVisor include a hypervisor.
Such a large software TCB is required when the underlying hardware does not support
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Sanctum [16] 2015 a a custom CPU 3 3

Intel SGX [42] 2015 a a SGX 3 3 3

TLR [51] 2014 a c TrustZone 3 3

Oasis [44] 2013 a a custom CPU 3 3 3

Fides [57] 2012 a d TPM, Virt. (3) 3

TrustVisor [40] 2010 a (d) TPM, Virt. 3 3 3

Flicker [41] 2008 a a TPM 3 3

Windows IUM 2016 b d Virt. 3

Haven [8] 2014 b c SGX 3 3 3

MiniBox [39] 2014 b d TPM, Virt. 3 3 3

InkTag [29] 2013 b d Virt. (3) 3 3

Overshadow [14] 2008 b d 3

CloudVisor [65] 2011 c d TPM, Virt. (3) 3

Nova [56] 2010 c d Virt. 3

NoHype [37] 2010 c c custom CPU (3)
vTPM [46] 2006 c d TPM, Virt. 3 3 3

Terra [22] 2003 c d TPM, Virt. 3 3 3

ARM TrustZone [4] 2003 c c TrustZone 3

TPM [59] 2002 d, e d, e TPM 3 3 3

Table3.1.:Comparison of trusted computing solutions. Rows are ordered first by Trusted
Execution (TEE) Level, then by Year. The columns TEE Level and Software Trusted Com-
puting Base (TCB) refer to Figure 3.2. All commercial solutions can be used stand-alone
(shown in their own row). Most commercial solutions are also used as hardware foun-
dation by solutions from research (shown in the Hardware TCB column). Solutions that
do not support attestation cannot strictly be considered implementations of trusted
computing. They do not support the verification step in Figure 2.6.

a The software levels a developer must provide to use the solution. E.g. c means that an operating
system and the application must be provided. This value of this column is automatically the
lower bound for the value of Software TCB.

b The software levels that are included in the solution’s TCB. E.g. d means the entire virtualisation
stack is included in the TCB. The software TCB is the union of software levels that the solution
internally adds and the software levels the developer must add (TEE Level).

c Virt. stands for hardware virtualisation support. SGX, TrustZone, TPM refer to the respective
commercial solutions.
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isolation at the desired level. Solutions with a smaller software TCB require specialised
hardware. This usually means a larger hardware TCB. Shifting the TCB from software into
hardware is not necessarily an improvement. Firstly, it is hard to draw a clear line between
the two. SGX is considered a hardware feature, but is implemented mostly in micro-code, the
firmware of the CPU.[15] Secondly, a hardware implementation must not automatically be
more secure than the alternative in software.

All presented solutions utilise the CPUs processing power. A TPM is used as an external
secure element by some. This is only responsible for attestation and handling of cryptographic
keys. Some solutions such as Flicker and NoHype do not make full use of the CPUs processing
power.

This is to the author’s knowledge the first comparison of its kind. A comparison of security
features of some solutions is presented in [15].
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This chapter describes Intel Software Guard Extensions (SGX) in more detail. Costan et
al. provide an exhaustive, in-depth description and analysis of SGX which is referred to as
additional reading material.[15] This chapter briefly describes the basic concepts of SGX and
then summarises further findings from research. This includes performance studies, known
criticism and security issues, as well as noteworthy applications built on top of SGX.

Application

SGX Enclave
Ring 3

Ring 2

Ring 1

Operating SystemRing 0

VMX non-root

Ring 3

Ring 2

Ring 1

HypervisorRing 0

VMX root

BIOSSMM more privileged

less privileged

Figure 4.1.: Intel SGX enclave within the privilege level hierarchy. An Intel CPU typically has two
privilege schemes. Privilege rings are the oldest concept, of which nowadays only ring zero and
three are used to separate the operating system and applications. These are often called kernel and
user mode. Virtualisation support adds another privilege scheme. The hypervisor runs in VMX
root mode. It is protected from the guest VMs running in VMX non-root mode. The BIOS runs at
the highest privilege level in system management mode (SMM). SGX enclave mode adds an inverse
isolation layer. The two existing privilege schemes protect more privileged components (bottom)
from less privileged ones (top). SGX enclaves are in the least privileged layer, but are protected
from all more privileged components. Reprinted from [15].

4.1. Overview

Intel SGX is a trusted computing solution. It is fully contained within the CPU and is exposed
as an instruction set. As described in chapter 3, SGX protects individual software modules
in so-called “enclaves”. Compared to other solutions, the TCB is small. It includes only the
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protected module and the CPU.15 SGX allows remote parties to verify the state of an enclave
(attestation). It provides additional features, such as data sealing, on top.

The operating system, system management code and other parts of the application do not
have to be trusted. The enclave is also protected from code running in system management
mode (SMM), as well as from direct memory access (DMA).[42] SGX changes the memory
access semantics by introducing a protection scheme inverse to the existing privilege levels.[15,
ch. 6.2]. Figure 4.1 shows how enclaves relate to existing privilege levels.

Figure 4.2 shows an abstract view of an application’s address space layout. The enclave’s
memory is protected by the CPU from direct access by any component but the enclave. When
enclave memory is loaded into the CPU (caches), the CPU can enforce isolation by checking
whether it is currently executing code of the correct enclave. If a memory page leaves the
control of the CPU (when writing it to DRAM) it is encrypted and integrity-protected.[26]
More details on SGX’s memory management are given in section 4.3.

Operating System

Enclave

Entry Table

Stack

Heap

Code

App Stack

App Heap

App Code

Figure 4.2.:Application address space with an Intel SGX enclave. The CPU only allows access to the
enclave’s memory if it is currently executing code belonging to that very same enclave. An enclave
can be entered only at specific points in the code, defined in the entry table. The entire enclave
memory (including code and entry table) is measured when the enclave is initialised. The CPU can
attest to a remote party that it loaded the enclave correctly. Reprinted from [42].

An interesting aspect of SGX is that it relies on the untrusted operating system to perform
its regular management tasks such as scheduling and memory allocation. This includes
the steps for setting up an enclave. Enclave attestation would expose any attempts by a
malicious operating system to load a tainted enclave. Costan et al. put it like this: “SGX
design expects the system software to allocate the EPC pages to enclaves. However, as the
system software is not trusted, SGX processors check the correctness of the system software’s
allocation decisions.” [15] Figure 4.3 shows the enclave life cycle.

This reliance on the untrusted operating system keeps the SGX implementation small. It
does however open up certain attack avenues. A denial of service (DoS) attack is straight-

15The TCB also includes Intel’s architectural enclaves.
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non-
existent unitialized

initialized
(not in use)

initialized
(in use)
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EINIT

EADD
EEXTEND

page management
instructions

EENTER
ERESUME

EEXIT
AEX

EREMOVE

page management
instructions

EGETKEY
EREPORT

Figure 4.3.: Intel SGX enclave life cycle. The enclave’s memory is protected in states shaded green.
State transitions occur when CPU instructions are executed. E.g. ECREATE creates a new, unini-
tialised enclave. The operating system is expected to load the enclave by adding pages and extending
the measurement of the enclave (similar to TPM measurement in Figure 3.3). Once EINIT is called,
the enclave is locked down. Its measurement is final and does not change when the enclave executes
and changes internal data. The OS can no longer access the enclave’s memory pages. The enclave
can now only be entered via EENTER (and after interrupts through ERESUME) at locations defined
in the entry table. EGETKEY and EGETREPORT use the initial measurement (the enclave’s identity)
for attestation and to derive cryptographic keys data sealing. The page management instructions
refer to paging into and out of Enclave Page Cache (EPC), a special memory area. Reprinted as a
simplified version from [15].
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forward, as the operating system can refuse to schedule any enclave threads. In the context
of remote computation, the infrastructure owner could choose to cut the power at any time,
so this is not really a disadvantage. More serious security issues are described in section 4.4.

Each SGX-capable CPU has an embedded cryptographic private key. Using a special group
signature scheme, the CPU uses this key to attest the state of an enclave.[34] Attestation
can occur locally to setup secure communication channels between different enclaves on the
same CPU.[1] It can also occur remotely. In this case, the attestation is not performed purely
in hardware, but relies on additional so-called “architectural enclaves”.[15] These enclaves
increase the size of the software TCB. They are also the main source for criticism of SGX as
explained in section 4.4.

Code running in an enclave may not execute certain calls. These can only be handled
by the untrusted wrapper.[33] Among them are instructions which may cause a VMEXIT16,
input/output instructions17 and instructions which require a change in privilege levels (e.g.
system calls).18[31] It is still possible to securely communicate with enclaves using a key
exchanged during the attestation process. An enclave can use a key derived from its identity
(initial measurement) to encrypt any data it wishes to expose to the untrusted world.

Multiple threads can be active at the same time in an enclave.[42] The number of threads
must be statically defined before the enclave is initialised. Also, the maximum enclave size
must be fixed before initialising the enclave.19 SGX capable CPUs are available since the end
of 2015.20.

4.2. Enclave Development

Intel offers a Software Development Kit (SDK) for authoring enclaves and integrating them
into an application. The SDK is available for both Windows21 and Linux22 The SDK provides
the following features:[32, 31]

C and C++: These are the only programming languages supported by the SDK.

Interface definition: An enclave’s interface is defined in the Enclave Definition Language
(EDL). This is described in more detail later on.

Debugging: This is actually a SGX hardware feature. An enclave in debug mode is not
protected by the CPU.

Simulationmode: In the absence of SGX hardware, the hardware is simulated for develop-
ment purposes.

16CPUID, GETSEC, RDPMC, RDTSC, RDTSCP, SGDT, SIDT, SLDT, STR, VMCALL, VMFUNC
17IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD
18Far call, Far jump, Far ret, INT n/INTO, IRET, LDS/LES/LFS/LGS/LSS, MOV to DS/ES/SS/FS/GS, POP

DS/ES/SS/FS/GS, SYSCALL, SYSENTER
19SGX version 2 allows a dynamic number of threads and dynamic memory size. No hardware is available at the

time of writing.
20https://github.com/ayeks/SGX-hardware
21https://software.intel.com/en-us/sgx-sdk
22https://github.com/01org/linux-sgx, open source under the very liberal BSD license.
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Trusted library: Helper functions for enclave development. This includes a subset of the
standard C library (e.g. without file input/output), random number generation, crypto-
graphic primitives, key exchange and data sealing.

Complete authoring chain: Enclaves can be compiled and signed so that they could be loaded
in production use. See section 4.4 for the restrictions that apply.

An example EDL interface definition is shown in Listing 4.1. It is divided into a trusted
(E-call) and untrusted (O-call) section. Based on this interface, the SDK generates proxy
functions. For all trusted functions (E-calls) proxies are generated for the untrusted wrapper.
For all untrusted functions (O-calls), proxies are generated for the enclave.

The proxy code is necessary for parameter marshalling. The function signature includes
additional annotations for the parameters. The annotations show the direction of data flow
(in, out, user_check). If in (and/or out) are specified, the proxy code will copy the parameter
by value before calling the function (and/or afterwards). A pass-by-reference can be achieved
with user_check. Pass-by-value is recommended for security reasons. The enclave cannot
rely on untrusted memory to be stable. However, copying and checking parameters adds
overhead. This is discussed in section 4.3.

Listing 4.1: enclave.edl23 – Enclave Definition Language (EDL) example file. EDL is used by the Intel
SGX SDK to specify an enclaves interface on the function level. The enclave’s entry table is generated
based on the trusted section of the EDL file. This EDL file defines only E-calls, but no outgoing
(untrusted) O-calls. The example is taken from the demo consumer of the author’s SGX helper
library.

1 enclave {
2 trusted {
3 /* add secret to sealed file */
4 public void add_secret(int secret);
5 public void print_secrets();
6 public void test_encryption();
7 public void set_key([in, size=128] uint8_t *key);
8 };
9

10 from "../sgx-lib/sgx_lib_t/sgx_lib.edl" import *;
11 untrusted {
12

13 };
14 };

The proxy needs to know how much data to copy for pointer arguments. This is handled by
the annotations size, sizefunc and count. The first two define the size of an individual element
statically or dynamically. The number of elements can be defined with count either statically
as a number or dynamically by referencing a different scalar parameter. For a full reference
of EDL, see [32].

The from . . . import in Listing 4.1 also shows how EDL files can be composed. In this
case, library helper functions are included. This is also the method of choice for adding

23https://github.com/ftes/sgx-lib-consumer/blob/thesis/enclave/enclave.edl
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remote attestation and key exchange to an enclave.24 The helper library in question assists in
prototyping SGX enclaves and is described in chapter 5.

In addition to the architectural enclaves (attestation etc.), Intel also provides some helper
enclaves as part of the Platform Software (PSW). These enclaves expose functionality such as
monotonic counters and trusted time.[32] They can be accessed via trusted library functions
included in the SDK. These enclaves rely on the Manageability Engine (ME), which is a part
of Intel CPUs, to provide these features.25

4.3. Performance

In principle, the CPU’s full processing speed is available in SGX enclaves. This is an advantage
over solutions with external secure elements. However, several factors have a observable
performance impact on enclave performance. Isolation is achieved by protecting an enclave’s
memory. The additional memory layers introduced to enforce this isolation have an impact on
access speed. Using Intel’s SDK on the other hand apparently results in a larger performance
impact. Existing findings from research are now presented.

Figure 4.4 shows what performance overhead an enclave has on memory access. Pre-
fetching hides most of the performance impact for sequential reads and writes.[5] Random
reads and writes highlight the actual performance impact. Two major factors impacting access
times can be identified in the diagram.26[5]

L3 cache size: Enclave memory remains decrypted within the CPU’s caches. As long as all
enclave memory fits in the L3 cache, memory access times are roughly equal. If the
cache is exceed, pages must be fetched from DRAM, decrypted and integrity-checked.

Enclave Page Cache (EPC) size: The EPC is a special section of DRAM. Pages that do not fit
into EPC must be paged out to regular sections of DRAM. The EPC size is limited to
128MB on current SGX CPUs, of which 92MB can be used by user’s enclaves. The rest
is needed for meta data and Intel’s architectural enclaves.

This performance overhead means that enclave memory is a valuable resource and must
be managed accordingly. If possible, the combined size of all enclaves on a system should
remain beneath the magical 92MB limit to avoid the 1000x performance penalty. Even better,
the size of the L3 cache should not be exceeded.

The SDK provided by Intel should also be used with caution regarding performance.
The SDK introduces the concept of E-calls and O-calls, which are synchronous transitions
into and out of the enclave.[33] The SDK’s performance is evaluated in [5]. They compare
different solutions for executing system calls from within an enclave. The first option is
to use the untrusted wrapper as a synchronous proxy (E-call for every system call). The

24https://github.com/01org/linux-sgx/blob/1115c195cd60d5ab2b80c12d07e21663e5aa8030/
SampleCode/RemoteAttestation/isv_enclave/isv_enclave.edl

25https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/
607330

26[31] also lists these as performance bottlenecks.
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4.4. Known Criticism

Figure 4.4.:Memory access speed in Intel SGX enclaves. Access times are normalised w.r.t native
(non-enclave) access. The two limiting factors, L3 cache size and Enclave Page Cache (EPC) size are
shown as grey lines. Sequential access hides some of the overhead due to pre-fetching. Reprinted
from [5].

CPU must switch execution context, execute the system call, and pass the result back to the
enclave. This adds a 10x overhead for file input/output. Better performance is achieved
with an asynchronous executor thread pool outside of the enclave. This solution results in
performance comparable to native execution.[5] However, the Intel SDK can apparently not
be used to build this complex kind of interaction.

4.4. Known Criticism

Intel SGX is a technically exciting solution for trusted computing. Related to SGX, criticism
has been voiced on multiple levels. It ranges from critique of trusted computing in general,
debatable SGX design decisions up to security bugs.

Trusted computing in general: The release of a commercially available solution for trusted
computing has re-triggered an existing debate. Intel SGX protects enclaves from any
access by the operating system and hardware owner.

Depending on the standpoint this may be a desirable feature or an intrusion into
personal rights. When deploying an application to the cloud, it may be desirable for the
software vendor to keep certain data secret from the infrastructure provider and other
tenants. When developing a blu-ray player (see section 4.5), it may be desirable for the
blu-ray industry to keep decryption keys secret and guarantee that digital rights are
not infringed. When executing an application as an end user or infrastructure provider,
it may be desirable to be in full control of the application.
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SGX turns the tables: the software vendor can – to a certain degree – take control of the
hardware without interference of the hardware owner. This gives cause to debates of
ownership.

Malware in enclaves: Enclaves are protected from the operating system and hardware owner.
This can also be a disadvantage from a security standpoint. Malware protected in an
enclave is an often stated example. Two factors are in place that should prevent this.
Firstly, enclaves cannot perform any input/output, so part of the malware would have
to live in an (observable) unprotected wrapper.[15, ch. 6.8] Secondly, Intel can decide
which enclave software will be loaded by an Intel CPU (white labelling). This is again a
cause of criticism.

Intel only white labels the identity of an enclave – its initial measurement. Because
enclave code may be self-modifying it is possible to dynamically load encrypted ma-
licious code into an enclave. This is a viable attack vector if an exploit is found for a
white labelled enclave, into which malware could then be loaded.[54] AsyncShock is
a tool that can help exploit enclave bugs. It targets synchronisation bugs in enclaves.
Using such a bug AsyncShock helps to extract secrets or modify the control flow in that
enclave. Enclaves approved by Intel could then be misused.[62]

Side-channel attacks: The following attacks have been successfully identified. The first two
have been successfully carried out.

• Memory access pattern analysis of well-known libraries in an enclave. This is
done with the help of the operating system, which simulates page faults to detect
memory access. As a result, images processed by a library within an enclave were
re-constructed. Oblivious RAM techniques and address space layout randomisa-
tion are proposed as counter-measures.[63]

• Cache Prime+Probe attack on co-located enclaves. Based on knowledge of in-
struction execution times, the authors could measure memory access times from
within an enclave and deduce cached values. With this technique an RSA key
was extracted from another enclave running a standard RSA implementation. The
authors propose several countermeasures. This attack highlights the problem of
having protected malware inside an SGX enclave.[54]

• Hyper-threading execution timing. SGX does not prevent the use of hyper-
threading. If an enclave shares a logical processor with a snooping thread that
thread could find out what instructions the enclave is executing as well as its
memory access patterns. The authors propose to disable hyper-threading. Also
the hyper-threading status should be included in the enclave measurement so that
it can be attested.[15]
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(a) original (b) recovered

Figure 4.5.:Result of a side-channel attack on SGX. By analysing the memory access pattern of an
enclave running the image processing library libjpeg, certain features of the input image could be
reconstructed. Reprinted from [63].

Vulnerability of architectural enclaves: SGX mainly consists of hardware: CPU microcode
and memory encryption engine. To make it feature-complete and usable, Intel adds
some architectural enclaves (launch enclave, quoting enclave) and platform software
(PSW). This keeps the hardware TCB small at the cost of a larger software TCB. The
quoting enclave access the CPU’s attestation key. A bug in the quoting enclave could
expose that attestation key. Intel’s EPID group signature scheme allows revocation of
individual keys. But a quoting enclave bug would potentially expose the attestation
keys of all SGX CPUs until a patched quoting enclave is deployed.[34] Intel is thus
under constant pressure to keep it’s architectural enclaves secured against any new
attacks. An exploit for an architectural enclave would also allow malware to be loaded
into a protected enclave as described earlier.

Intel controls enclave launch: Enclave launching, like attestation, is also implemented in soft-
ware in an architectural enclave. This lets Intel control which enclaves may be launched.
An enclave can be loaded either if it is authored by Intel (e.g. the launch enclave) or
if the launch enclave grants the launch. Based on Intel’s patents for SGX, Costan et al.
surmise that “the Launch Enclave is intended to be an enclave licensing mechanism
that allows Intel to force itself as an intermediary in the distribution of all enclave
software”.[15]

This allows Intel to prevent malicious software from being loaded. This also allows Intel
to control which software is loaded in general. The benefits for Intel from a business
standpoint are obvious. This level of control over an end-users hardware can be seen as
“software security equivalent to the Net Neutrality debates”.[15]

35



4. Intel SGX

4.5. Applications

Leaving the (well-founded) criticism behind, SGX has the potential to be the foundation for
innovative applications. This section highlights some interesting SGX-based applications
from research. It does not describe such applications that themselves can be considered
frameworks or infrastructure layers for securing other applications such as SCONE or Haven.
These are discussed in section 6.2.

Proof of elapsed time: Bitcoin is the prototypical ledger-based crypto-currency. Its security
revolves around the notion of proof-of-work. As long as the assumption holds that
the majority of processing power in the Bitcoin network belongs to honest users, the
majority of the network eventually behaves as expected.[43]

The proof-of-work to be brought forward in Bitcoin is the solution of a hash puzzle.
Participants (miners) must hash a fixed input combined with an input of their choice
so that the resulting hash satisfies a certain criteria. The first miner to find a solution to
the puzzle wins. Competing in the network requires investment of processing power
and thus money.

The downside is that this processing power is invested in finding a solution to a random
puzzle. This solution has no inherent value outside of Bitcoin. Alternative crypto-
currencies such as Primecoin use puzzles with solutions that have an inherent value,
such as finding new prime numbers.[38]

A different approach based on SGX enclaves is proposed in Intel’s Sawtooth27 project.
Sawtooth introduces proof-of-elapsed-time (PoET) as an alternative to proof-of-work.
Essentially, Intel CPUs are used as an attestable source of true random numbers. If
this number is viewed as a wait time, the participant to generate the lowest wait time
wins.[30]

Digital rights management (DRM): The current version of Cyberlink’s PowerDVD requires
SGX hardware for playback of ultra high definition (UHD) blu-rays.[17] This is an
example of how SGX can be used on consumer devices rather than cloud infrastructure.
Cyberlink does not explain what SGX is used for. It is likely that an enclave handles
the decryption of the blu-rays content. The decryption key would then only provided
to attested enclaves by the Cyberlink server.

Secure ZooKeeper: ZooKeeper28 is a key-value store used to provide configuration, naming,
synchronisation etc. in distributed applications (e.g. micro-service architectures). SGX
can be used to harden existing applications, which is the topic of this thesis. Secure-
Keeper uses enclaves to protect the data managed by ZooKeeper. When the data is
stored outside of the enclave, e.g. on disk, it is encrypted. The Java native interface
(JNI) is used to bind the Java implementation of ZooKeeper to the enclaves.[12]

Secure Hadoopmap-reduce: VC3 is a prototype of Microsoft Research that “runs distributed
MapReduce computations in the cloud while keeping their code and data secret.”

27https://intelledger.github.io
28https://zookeeper.apache.org/
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Hadoop is used as the underlying map-reduce engine. The map and reduce jobs
run within enclaves. All other software components such as Hadoop or the oper-
ating system are kept outside of the TCB. Enclave code, input data and the results
remain encrypted when outside of enclaves. VC3 achieves full Hadoop compatibility
by performing all setup steps “in-band” as map-reduce jobs: distributing enclave code,
performing attestation, and distributing data decryption keys.[53]

4.6. Conclusion

SGX is the first trusted computing solution that is likely to see widespread adoption. It is
shipped with many current Intel desktop processors29. SGX has potential use-cases for both
end-consumer devices and cloud infrastructure. Its main advantage when compared to other
solutions is the achievable processing speed. SGX provides module-level TEEs and has an
small overall TCB.

There are many potential security issues and weighty criticism regarding Intel’s design
decisions and the influence Intel thus has over end-user hardware. Only time can tell how
well SGX as a technology will be received and whether it can live up to its expectations. The
continued security of the architectural enclaves seems to be a crucial factor.

29https://github.com/ayeks/SGX-hardware
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5. Intel SGX Helper Library

The case studies conducted for this thesis use the Intel SGX SDK for Windows.30 To make
prototyping faster and easier, a helper library wrapping the SDK was developed alongside
the case studies. The library contains scripts and wrapper functions that make working with
the SDK easier. The library also assists in constructing a shim C library (Figure 6.1). The
concepts of this library and some usage guidelines are introduced in this chapter.

The full code is not printed in this chapter or the appendix. Please refer to the Git
repository.31 The repository also contains more in-depth details on configuration and usage.
A demo consumer project showcases usage of the library.32 The Git tag thesis in these
repositories marks the commit from which the code listings in this thesis are taken.

No SGX hardware was available at the time of implementation. The library is only usable
for simulation mode. It can not be used in production-ready enclaves.

The library is split into a trusted and untrusted module. The consumer can include the
header files and link against these library modules. Also, the consumer must include the
library’s EDL file in his.

The library tries to help with four aspects of enclave development:

Generate O-call proxies: This is necessary if the C library lives outside of the enclave. Then a
shim is needed inside the enclave to proxy calls to the outside (see Figure 6.1). Defining
these proxies involves touching several files and repeatedly inserting a similar method
signature. The add_ocall.sh script speeds up this process. See Table 5.1 for details on
how to use this script.

As an example, consider adding a proxy for the _ftelli6433 Windows C library func-
tion. The helper script has to be called as shown in Listing 5.1.

Listing 5.1: Example invocation of O-call generation script. The script generates EDL code,
trusted header code and trusted and untrusted proxy implementations. The environment
variables do not have to be set. Their default values correspond to the directory and file
layout of the library.

1 sgx-lib/add_ocall.sh "int64_t _ftelli64([user_check] FILE* file);"

The following listings show the code generated by the script. Figure 5.1 shows how the
generated code interacts with the SDK and C library.

30At implementation time (first half of 2016), the Linux SDK was not yet available.
31https://github.com/ftes/sgx-lib/tree/thesis
32https://github.com/ftes/sgx-lib-consumer/tree/thesis
33https://msdn.microsoft.com/de-de/library/0ys3hc0b.aspx
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Enclave

Custom code

Library-generated proxy

SDK-generated proxy

SDK-generated proxy

Library-generated proxy

C Library

Figure 5.1.: Interaction of proxies generated by Intel’s SDK and the helper library. The SDK proxies
deal with parameter handling. Depending on the EDL definition, parameters are checked and
copied back and forth. The enclave library proxy checks the return value and prints human
readable error messages. The untrusted library proxy delegates to the C library.

Listing 5.2: sgx_lib.edl (extract).34 The EDL interface definition is extended with the O-call. This
does not affect the enclave entry table, as this only controls the allowed E-calls.

46 /* GENERATE OCALL CODE AFTER THIS LINE */
47 int64_t _ftelli64_ocall([user_check] FILE* file);

Listing 5.3: sgx_lib_t_stdio.h (extract).35 The trusted header file is modified to include the proxy
function’s signature.

41 /* GENERATE OCALL CODE AFTER THIS LINE */
42 int64_t _ftelli64(FILE* file);

Listing 5.4: sgx_lib_t_stdio.c (extract).36 The trusted proxy implementation. The proxy also acts
as an adapter. It converts the O-calls signature (with the return value passed as a pointer) to
the original signature. The proxy checks for errors. If an error is encountered, a meaningful
error description is printed using an O-call.

190 /* GENERATE OCALL CODE AFTER THIS LINE */
191 int64_t _ftelli64(FILE* file) {
192 int64_t ret;
193 check(_ftelli64_ocall(&ret, file));

34https://github.com/ftes/sgx-lib/blob/thesis/sgx_lib_t/sgx_lib.edl
35https://github.com/ftes/sgx-lib/blob/thesis/sgx_lib_t/include/sgx_lib_t_stdio.h
36https://github.com/ftes/sgx-lib/blob/thesis/sgx_lib_t/sgx_lib_t_stdio.c
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194 return ret;
195 }

Listing 5.5: sgx_lib_u_stdio.c (extract).37 The untrusted proxy implementation. This simply
delegates to the C library implementation.

35 /* GENERATE OCALL CODE AFTER THIS LINE */
36 int64_t _ftelli64_ocall(FILE* file) {
37 return _ftelli64(file);
38 }

The untrusted wrapper seems superfluous. Rather, the SDK could directly be linked
to the C library implementation. The SDK supports this feature by adding [cdecl,
dllimport] to a function signature in the EDL file.[32] However, the generated stub
in the enclave has a different signature in case the function has a return value. The
generated signature of the trusted fopen O-call is shown in Listing 5.6.

Listing 5.6:Generated O-call signature for standard C library function. The SDK passes the
return value via a pointer parameter.

void fopen(FILE* retVal, const char* filename, const char* mode);

To use unmodified legacy code in an enclave, the library functions must have the exact
same signature. To provide trusted functions with the original signature, one has to
overload the functions in the enclave. This is not possible in C. The library is written
in C to facilitate usage in both C and C++ projects. As a workaround the O-calls are
appended with a _ocall suffix. No overloading is thus necessary. Instead, an untrusted
proxy implementation is generated which delegates to the C library implementation.

Translate error codes tomessages: A variety of error codes is defined for SGX38. Many SDK
functions and the generated proxies can return these error codes. Manually looking up
their meaning is time-consuming.

The library contains a trusted39 and untrusted40 utility function to check the return
value. The descriptions are scraped from the Intel SDK’s sgx_error.h41 file. The
scraping script is included as part of the library. It has to be re-executed in case the
error codes or messages change. For usage details, see Table 5.1.

Developer-friendly encryption: The SDK includes a cryptography library. It can also seal
data to an enclave’s identity (see section 2.2). However, some of the SDK’s cryptography
functions are cumbersome to use. Due to the use of block ciphers and nonces the
encrypted/sealed data size is not trivial to determine. The library provides a thin

37https://github.com/ftes/sgx-lib/blob/thesis/sgx_lib_u/sgx_lib_u_ocalls_stdio.c
38https://software.intel.com/en-us/node/709252
39https://github.com/ftes/sgx-lib/blob/thesis/sgx_lib_t/sgx_lib_t_util.c#L10
40https://github.com/ftes/sgx-lib/blob/thesis/sgx_lib_u/sgx_lib_u_util.c#L8
41The version included in the Windows SDK is probably identical to the Linux version: https://github.com/

01org/linux-sgx/blob/sgx_1.9/common/inc/sgx_error.h
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wrapper for data sealing (the SDK’s interface is simple enough). The library adds a
more extensive wrapper for encryption. Regular encryption must be used instead of
data sealing if the developer needs to be in control of the encryption key. This can be
the case if encrypted data is provided as an input, and not encrypted by the enclave
itself. Also, encryption adds far less overhead than the data sealing performed by the
SDK as shown in chapter 7.

Listing 5.7 shows the corresponding functions exposed by the library.

Listing 5.7: sgx_lib_t_crypto.h (extract).

18 uint32_t get_sealed_data_size(uint32_t plaintext_data_size);
19 int seal(const void* plaintext_buffer, uint32_t plaintext_data_size,

↪→ sgx_sealed_data_t* sealed_buffer, size_t sealed_data_size);
20 int unseal(void* plaintext_buffer, uint32_t plaintext_data_size, sgx_sealed_data_t

↪→ * sealed_buffer);

27 uint32_t get_encrypted_data_size(uint32_t plaintext_data_size);
28 int encrypt(const void* plaintext_buffer, uint32_t plaintext_data_size,

↪→ sgx_lib_encrypted_data_t* encrypted_buffer, sgx_aes_ctr_128bit_key_t* key);
29 int decrypt(void* plaintext_buffer, uint32_t plaintext_data_size,

↪→ sgx_lib_encrypted_data_t* encrypted_buffer, sgx_aes_ctr_128bit_key_t* key);

Encryption/decryption is done using AES block cipher in counter mode (sgx_aes_¬
ctr_encrypt library function). According to NIST, counter mode encryption is efficient
because output blocks can be derived in parallel, even before the complete payload is
available.42[13] NIST also mandates that the counter must be unique over all messages
encrypted under the same key. If the counter space is large enough compared to the
payload sizes, the encryption key can be re-used if the initial counter – also known as
initialisation vector (IV) or nonce – is chosen at random.

The library encrypt function chooses a random IV using SGX’s trusted source of
randomness by calling sgx_read_rand.43 The IV is added to the encrypted output. The
decrypt function does the opposite: It reads the nonce from the beginning of the input
data and uses it to decrypt the data.

Transparently encrypt input/output: The concept of transparent de- and encryption of in-
put/output data is used in related work. This protects data operated on by legacy code
without any code modifications. The library supports this concept by intercepting calls
to the C library for file input/output. Replay protection is not added. The enclave will
not notice whether the most recent or an older value is provided.

The developer can choose the desired security level at compile time using macros:

• No security. Useful during development, file input/output happens in plain text.

42The library does not make full use of this fact for decryption, because the data is first copied into the enclave
in full by the SDK proxy.

43https://github.com/ftes/sgx-lib/blob/thesis/sgx_lib_t/sgx_lib_t_crypto.c#L115
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• Encryption with custom key. Useful for debugging. A symmetric encryption key
is required, which can be set using set_secure_io_key()44.

• Data sealing. This is the default option and seals all input/output to the enclaves
identity.

Listing 5.8 shows the preprocessor macros that switch the behaviour.

Listing 5.8: sgx_lib_t_stdio.h (extract).45 The macros SGX_INSECURE_IO_OPERATIONS and
SGX_SECURE_IO_OPERATIONS_KEY control how input/output is protected. By default, it is
sealed.

27 #ifdef SGX_INSECURE_IO_OPERATIONS
28 #define fwrite fwrite_insecure
29 #define fread fread_insecure
30 #else
31 #ifdef SGX_SECURE_IO_OPERATIONS_KEY
32 void set_secure_io_key(sgx_aes_ctr_128bit_key_t key);
33 #define fwrite fwrite_encrypted
34 #define fread fread_encrypted
35 #else
36 #define fwrite fwrite_sealed
37 #define fread fread_sealed
38 #endif
39 #endif

44https://github.com/ftes/sgx-lib/blob/thesis/sgx_lib_t/sgx_lib_t_stdio.c#L37
45https://github.com/ftes/sgx-lib/blob/thesis/sgx_lib_t/include/sgx_lib_t_stdio.h
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Name Tru
ste

d

Untru
ste

d

Details

add_ocall.sha 3 3

Script that generate an O-call. Use e.g. for generating C
library proxies. Writes EDL definition, trusted and untrusted
wrapper code. A hook can be defined in each file after which
the auto-generated code should be inserted.
Configurable via environment variables. These control
where app, enclave, EDL file, header and source code files
are located.

$ sgx-lib/add_ocall.sh "void rewind([user_check] FILE*
↪→ file);"

generate_er-
ror_codes.shb 3 3

Script that generates a helper functionc to translate error
codes into human-readable descriptions. Parses the SDK’s
sgx_error.h for error code descriptions.

sgx_lib_t_¬
stdio.hd 3

Proxies to input/output functions of the C library outside
of the enclave. Part of the shim C library in Figure 6.1. De-
pending on the configuration, data is passed in plain text or
transparently encrypted or sealed.

sgx_lib_t_¬
util.he 3

Trusted helper functions. String formatting and return type
checks. On errors, meaningful descriptions are printed (if
transparent encryption/sealing is not activated).

sgx_lib_t_de-
bug.hf 3

Trusted helper functions for debugging. Log messages and
printf.

sgx_lib_t_¬
crypto.hg 3

Wrapper functions for SDK encryption and sealing. Can
calculate the sealed data size for a given plain text size (nonce
plus a multiple of the block cipher size).

sgx_lib_u_¬
util.hh 3

Untrusted helper functions. Return type checks (see trusted
util functions) and enclave setup/teardown.

Table 5.1.:Helper library overview. The important components (scripts, header files) are listed. The
columns trusted and untrusted define where the code can be used (enclave or wrapper). The library
includes two scripts to easily extend it with new C library proxies and error messages. Also it
contains wrapper functions and pre-generated C library proxies. An example is given for the
add_ocall.sh script.

a https://github.com/ftes/sgx-lib/blob/thesis/add_ocall.sh
b https://github.com/ftes/sgx-lib/blob/thesis/sgx_lib_t/generate_error_codes.sh
c https://github.com/ftes/sgx-lib/blob/thesis/common/sgx_lib.c
d https://github.com/ftes/sgx-lib/blob/thesis/sgx_lib_t/include/sgx_lib_t_stdio.h
e https://github.com/ftes/sgx-lib/blob/thesis/sgx_lib_t/include/sgx_lib_t_util.h
f https://github.com/ftes/sgx-lib/blob/thesis/sgx_lib_t/include/sgx_lib_t_debug.h
g https://github.com/ftes/sgx-lib/blob/thesis/sgx_lib_t/include/sgx_lib_t_crypto.h
h https://github.com/ftes/sgx-lib/blob/thesis/sgx_lib_t/include/sgx_lib_t_util.h
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6. RelatedWork

The previous chapters already introduced a variety of related work. This chapter presents
research more directly related to this thesis (e.g. with a similar problem definition).

Diverse solutions for hardening applications have been evaluated in existing research. Dif-
ferent avenues exist to approach the problem of hardening applications. Trusted computing
is one alternative, cryptography – depending on the application – another.

This chapter first presents related research on secure databases. This section describes new
application architectures and the use of cryptographic principles. Then research most related
to this thesis is presented: application hardening using Intel SGX.

6.1. Hardened Databases

Database management software (DBMS) is standard software used by many applications.
The data it operates on may be sensitive. The amount of data to process may also exceed
viable enclave sizes. For these reasons, DBMS is deemed a good example that can be used in
the case studies later on in this thesis.

Database software can be hardened with application-specific encryption in addition to
standard solutions to trusted computing such as Intel SGX. Such approaches from research
are now presented.46 Hardened databases can be classified by their use of a secure location
and the level of encryption homomorphism they employ. Table 6.1 shows the location of
existing research prototypes in the design space spanned by these two dimensions.

The point in the design space that this thesis investigates is also indicated. The case studies
in chapter 7 and chapter 8 further discuss this. The remainder of this section briefly elaborates
on existing research. Excellent architecture diagrams for most of these solutions can be found
in [3].

Arx[47] is the only DBMS in this list that does not perform some computation on encrypted
data. It uses the trusted client’s computer as a secure location. “Instead of embedding
the computation into special encryption schemes [...], Arx embeds the computation into
data structures, which it builds on top of traditional encryption schemes.”

Arx uses an unmodified DBMS as foundation. On both the trusted location (the client)
and the untrusted DBMS server a proxy is added. The client proxy rewrites queries
and can decrypt results. Only it knows the decryption key. The client proxy also has to
re-generate indices after usage.

46Commercial solutions are not presented. Examples are “Microsoft’s Always Encrypted Service, currently
deployed as part of SQL Server 2016, Skyhigh Networks, CipherCloud, Google’s Encrypted Big Query, SAP’s
SEEED, Lincoln Labs.”[47]
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Homomorphism of encryption scheme

None Partial Full

Se
cu

re
lo

ca
ti

on

None

Client Arx[47]
CryptDB[48]
Monomi[60]

Co-processor TrustedDB[7]

FPGA Cipherbase[2]

SGX Enclave this thesis

Table 6.1.: Design space of hardened databases. Two dimensions are used for classification: se-
cure location and homomorphic encryption. E.g. TrustedDB uses a co-processor and partially
homomorphic encryption. Not all areas of the design space have been investigated. Promising
uninvestigated areas are shaded green. This thesis explores secure databases using SGX enclaves
and none-homomorphic encryption. Adding partially homomorphic encryption could benefit per-
formance. Certain queries could be executed outside of the enclave (without decrypting the data in
the enclave). Fully homomorphic encryption is still to inefficient but could enable complex queries
an encrypted data. Based on [3].
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Arx can – in a limited fashion – also securely evaluate confidential functions on the
server. These functions must be expressed as garbled circuits, an implementation of
two-party computation proposed by Yao.[64] Garbled circuits are used by Arx for range
checks on the untrusted server. Arx’s TCB consists of the client proxy, and potentially
the entire software and hardware stack of the client if the proxy is not isolated.

CryptDB[48] uses “efficient SQL-aware encryption schemes”. The data must be encrypted by
the trusted client. The client must anticipate the expected query types and encrypt the
data with matching encryption schemes. If unexpected query types are added later on,
the client must re-encrypt parts of the data. CryptDB encrypts data with schemes that
support DBMS operations such as equality checks, joining and searching. Such schemes
have different characteristics: deterministic, order-preserving, partially homomorphic.

CryptDB uses “onion encryption” as an optimisation. Encrypted values are again
encrypted with a different scheme. This minimises the required interaction of the client.
If the server must perform a more complex query on a table (e.g. an equality join
instead of just an equality select) the client provides a decryption key. With this key
the server can peel off one more encryption layer of the onion. The encrypted value
of the lower level is now encrypted with a scheme that supports the desired operation.
Encryption schemes cannot be layered in any combination. For example, a deterministic
encryption cannot be layered on top a non-deterministic one. It would not produce
deterministic encryption of the original plain text.

CryptDB is implemented with a custom client proxy and user defined functions (UDFs)
in a regular DBMS. CryptDB does not support the full SQL standard. The TCB is
comparable to Arx.

Monomi[60] “builds on CryptDB’s design of using specialised encryption schemes.” In
addition, Monomi splits the query execution into server and client parts. Monomi
“executes as much of the query as is practical over encrypted data on the server, and
executes the remaining components by shipping encrypted data to a trusted client,
which decrypts data and processes queries normally.”

Compared to CryptDB, Monomi is more flexible. By including the client in query
execution more complex queries are possible. However query execution on the client is
contrary to the idea of outsourcing computation. It also can require transfer of larger
amounts of intermediate data. As an optimisation, Monomi proposes to pre-compute
results for complex queries. Monomi’s TCB is the comparable to Arx and CryptDB.

TrustedDB[7] is the first DBMS in this list to use trusted hardware on the server. TrustedDB
actually runs two DBMS instances, one within the regular operating system and one on
a secure co-processor. The trusted DBMS has a paging module that pulls in encrypted
pages from the untrusted operating system when needed. The trusted DBMS knows
the decryption key for the data.

A split query plan is generated, somewhat similar to Monomi. The query must be
planned on the secure co-processor. As much computation as possible is performed on
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encrypted data by the untrusted DBMS. The TCB includes the co-processor, and the
trusted DBMS.

Cipherbase[2] also uses trusted hardware. A Field Programmable Gate Array (FPGA) is
used to evaluate individual parts of the query. The FPGA is configured to run a stack
machine and is not re-configured for every query.

Compared to TrustedDB, the software TCB on the server is smaller. The trusted hard-
ware does not execute a full DBMS but only executes individual processing steps.
However, Cipherbase also needs a trusted client to plan and optimise the queries. In
TrustedDB, this functionality was provided by the trusted DBMS.

6.2. Hardening Applications with Intel SGX

This section presents related work on hardening applications using Intel SGX as a trusted com-
puting solution. First, application-specific approaches are listed. Next, general approaches
are described. The section concludes with a summary of the lessons learnt from this research.

Application-specific research focuses on hardening a specific application with SGX. The
application in question may remain unmodified or be refactored. The approaches used in
these papers can be abstracted and re-used to a certain degree:

Verifiable Confidential Cloud Computing (VC3)[53] was already described in section 4.5. Se-
cure map-reduce jobs are executed in enclaves on an unmodified Hadoop. This solution
is special because Hadoop takes programs (jobs) as input. It is sufficient to protect these
jobs. The Hadoop engine runs outside of the enclave. VC3 manages to protect against a
malicious Hadoop engine by protecting the integrity of the overall result using only the
map-reduce jobs.

Though a highly interesting approach, this technique is not applicable in general. For
the use-case of DBMS, UDFs could potentially be executed in enclaves like jobs in
Hadoop.

SecureKeeper[12] was also presented in section 4.5. The approach followed in the paper is
more generally applicable. ZooKeeper data is protected within in enclaves. To this end,
parts of the ZooKeeper functionality are refactored. The authors favour a tailored enclave
over an application enclave. The authors analyse memory access speeds in SGX and give
recommendations on memory management in enclaves. These are identical to SCONE,
which shares many of its authors with SecureKeeper.

General approaches deal with reusable approaches for isolating applications with SGX:

Haven[8] was already described in subsection 3.3.2 as a trusted computing solution for
application-level isolation. Haven isolates unmodified legacy applications in an enclave.
A library operating system is also included in the enclave to minimise the exploitable
interface between the enclave and the untrusted world.
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SCONE[5] connects SGX and Docker47 containers. Alternative enclave designs are evaluated
as shown in Figure 6.1. Option a) is Haven’s approach of including a library operating
system in the TCB. This keeps the interface between enclave and untrusted system
extremely narrow (comparable to the interface between VM and hypervisor), but inflates
the TCB. Option b) minimises the size of the TCB. The C library implementation lives
outside of the enclave. This results in a large interface at the level of the C library
interface. Option c) is the middle ground. The C library is lives inside the enclave,
resulting in an enclave interface at the level of system calls. The authors choose option
c), the middle ground, for their container implementation.

Application code

Libraries

C Library

Library OS

Shielding Layer

Host OS

Application code

Libraries

Shim C Library

C Library

Host OS

Application code

Libraries

C Library

Shielding Layer

Host OS

a) b) c)

Figure 6.1.: Enclave design alternatives. The TCB contained by an enclave is shaded green. The
components below that are untrusted. The options are: a) Library operating system inside the
enclave. b) Minimal enclave size with an external C library. c) Untrusted system calls with an
internal C library. Depending on the code included in the enclave, the TCB size and interface size
vary. Reprinted from [5].

The performance of Intel’s SDK is evaluated with regards to proxying system calls
from inside the enclave to the host operating system. As it proves to be insufficient for
handling many parallel system calls, the SDK is not used but replaced with a worker
thread pool in the untrusted wrapper. The performance is evaluated based on different
unmodified legacy applications. To measure the performance of the “file shield” (data
sealing), SQLite is run in an enclave.

SCONE also evaluates how the process of authoring, provisioning and executing Docker
images can be secured using attestation.

So�ware Partitioning case study[6] evaluates different approaches to partitioning OpenSSL
into enclaves. Different partitioning schemes are identified, the most important of which
are:

47https://www.docker.com
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1. Separate enclaves by functionality. The enclave code must enforce isolation between
different data sets within one enclave (e.g. between tenants).

2. Separate enclaves by data set (e.g. tenant). Related data lives in a single enclave
which contains all functionality related to that data.

The two options can be combined. If non are used, the entire application lives in a single
enclave (similar to Haven). If both are combined, there is an enclave per functionality
per data set. Exploiting a single enclave reveals a minimal amount of data. However,
higher decomposition requires more complex interaction. This may lead to new security
issues.

The effect of separating enclaves by data set is questionable. If an exploit is found for
an enclave, it can likely be applied to the enclaves of all tenants.

SCONE and the partitioning case study presented valuable design alternatives for enclaves.
These alternatives are evaluated in the case studies later on in this thesis.
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Two case studies were conducted to validate the gathered knowledge. The goal of both case
studies is to harden an existing DBMS. Database software is chosen because it is a good
example application for trusted computing. The data may be sensitive and require protection
from the infrastructure provider and other tenants.

The first case study examines KISSDB48, the “simplest key/value store you’ll ever see, any-
where. It’s written in plain vanilla C using only the standard string and FILE [input/output]
functions.”49. KISSDB stores key/value pairs of fixed size. It does not provide any processing,
but only a put/get interface plus iterators. In this regard it is similar to ZooKeeper. Figure 7.1
shows the simplicity of KISSDB’s database file layout.

In this case study, Intel SGX is used to protect the data KISSDB operates on. The code is
not printed in this chapter or the appendix. Please refer to the Git repository.50 The following
aspects are out of scope for this case study.

• Attestation and secure communication channels.

• File integrity and freshness (replay attacks).

• Securely provisioning an encryption key.

The focus is on which part of KISSDB can be extracted, and transparently securing it with
the helper libraries encryption/sealing features.

7.1. Design

This section discusses the design decisions for hardening KISSDB. The resulting architecture
is shown in Figure 7.2.

Shim C library (see Figure 6.1). This option is the easiest to implement, but results in the
largest enclave interface. This approach also incurs the performance overhead of the
SDK-generated proxies. The ease of implementation outweighed the other two negative
aspects.

Separate enclaves by data set. One enclave is set up per open() invocation. As KISSDB does
not provide locking, only one enclave should be set up per database file.

Entire legacy code in enclave. KISSDB is not sub-divided into trusted and untrusted func-
tionality. A single enclave is used for all trusted functionality. KISSDB is so small, it is

48Keep it Simple Stupid DataBase
49Original code: https://github.com/adamierymenko/kissdb
50Fork with SGX hardening:https://github.com/ftes/kissdb-sgx
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KDB2
256
8
64

version
page size (entries)
key size (bytes)
value size(bytes)

hash offset
0

. . .
117
. . .
255

next page

key value
0 hash: 117 0

42 128

. . .

hash offset
. . .

key value
13 hash: 0 42

. . .

header

hash table page 1

data block 1

hash table page 2

data block 2

Figure 7.1.:KISSDB file layout. Implicit data structures (tables) are visualised. Text in grey is added
as an explanation, but not present in the file. The destination of file offsets in the offset column are
visualised as arrows. New data (key/value pair) is appended to the end of the file. A new hash
table entry is inserted in the first page where the bucket is not yet occupied. A new hash table
page is appended when all existing pages have an entry for the bucket in question. In the hardened
version, data blocks are encrypted (shaded in green). Meta data (header and hash tables) is not
encrypted.
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difficult to identify a part that should be pulled out. KISSDB does not support any data
processing, which otherwise would have been a likely candidate.

Plain text meta data. While at rest, data is encrypted. This means the payload is written to
the database file in encrypted form (see Figure 7.1). The meta data (header, hash tables)
are written as plain text. This keeps the required changes to the legacy code base to a
minimum as discussed in section 7.2. This has the following security implications:

• The meta data is not protected. This includes the number of entries as well as the
key and value size.

• The key hashes are not encrypted. If the hash scheme is not cryptographically
secure, an attacker may learn information about the hash values.

• Also, if the key space is small or non-uniformly distributed, an attacker may learn
information about the keys by pre-computing all (or all likely) key hashes.

The file content of original and hardened KISSDB files is compared in Appendix A.

Iterator outside of enclave. A KISSDB iterator is a cursor which allows iterating through all
values. The cursor’s position is identified by the hash table page number and item
offset within that page. Several iterators can exist in parallel for a single database. The
iterator is something that inherently belongs to the consumer using the iterator. The
iterator data (page number and page offset) is held outside of the enclave. This way the
enclave remains stateless. As the meta data is stored in plain, this is not an additional
security risk.

Encrypt with custom key instead of sealing. Data sealing encrypts the data with a key derived
from the enclave’s identity. This identity is based only on the initial state (the loaded
code). That means it is the same even if the enclave is initialised several times for
different database files. Sealing the data would allow a consumer to read all other
database files. Instead, the user has to specify the encryption key when creating the
KISSDB instance (open() in Figure 7.2).

7.2. Implementation

This section highlights some implementation details.

Proxies in untrusted wrapper: The untrusted wrapper acts as a proxy to the enclave. The
open and close functions must also set up and destroy the enclave. For this, they
use the library’s helper functions. Listing 7.1 shows parts of the enclave’s interface
definition.

Listing 7.1: kissdb.edl (extract).51 Two E-calls from the trusted section of the EDL file. The get
E-call shows how the size annotation is used to define the length of the parameters key and
value through further parameters. The annotation in is used for the key, and out for the
value. This tells the SDK to copy the key into the enclave before execution, and the value out
of the enclave after execution.

51https://github.com/ftes/kissdb-sgx/blob/thesis/kissdb_t/kissdb.edl#L7
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create

destroy kissdb_t

struct KISSDB {
file
hash_tables [...]

}

file.db
meta data: plain text

payload: encrypted

open()

close()

put()

get()

Iterator_init()

Iterator_next()

kissdb_u

Figure 7.2.:Hardened KISSDB architecture. The legacy code is moved to an enclave (kissdb_t). The
untrusted wrapper (kissdb_u) sets up the enclave and proxies put/get calls to the enclave. The
shim C library transparently encrypts (or seals) the payload written to the file. The meta data is
written as plain text. The hash tables are held in enclave memory for fast navigation.

7 public void KISSDB_close_ecall();
8 public int KISSDB_get_ecall([in, size=key_size] const void *key, [out, size=

↪→ value_size] void *vbuf, unsigned long key_size, unsigned long value_size);

Listing 7.2 shows the corresponding implementation of the untrusted wrapper which
delegates to the SDK-generated proxies.

Listing 7.2: kissdb_u_wrapper.c (extract).52 Most functions in the wrapper simply delegate to
the enclave through the SDK-generated E-call proxies. The get function adds the _size
parameters, taken from the database structure. This informs the SDK which amount of
memory to copy to/from the enclave for the key and value parameters. The close function
most also tear down the enclave which is simplified through the helper library.

23 void KISSDB_close(KISSDB *db) {
24 // freeing memory and memsetting as performed by this ecall is not really

↪→ necessary, as we are destroying enclave anyway
25 KISSDB_close_ecall(db->eid);
26

27 destroy_enclave(db->eid);
28 memset(db,0,sizeof(KISSDB));
29 }
30

31 int KISSDB_get(KISSDB *db, const void *key, void *vbuf) {
32 int retval;
33 KISSDB_get_ecall(db->eid, &retval, key, vbuf, db->key_size, db->value_size);
34 return retval;
35 }

Plain text meta data: For the case study, the library was configured to transparently encrypt
all file input/output (see chapter 5). The meta data should be output as plain text, so

52https://github.com/ftes/kissdb-sgx/blob/thesis/kissdb_u/kissdb_u_wrapper.c#L23
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a distinction has to be made between meta data and payload. This option requires the
least changes to KISSDB’s code.

The key and value size (which are also written to the file header) are adapted to include
the cryptographic nonce and rounded to the next cipher block size. By keeping the
header and hash tables in plain text, KISSDB’s file navigation logic does not have to be
altered. The offset calculation is preserved.

Listing 7.3 shows a diff command for the code changes to KISSDB.

Listing 7.3: Diff command to view changes to KISSDB’s code. The hardened version was
forked from the original at commit 37194e.

1 cd kissdb_t
2 wget --no-check-certificate -O kissdb.c.orig https://raw.githubusercontent.com/

↪→ adamierymenko/kissdb/37194e7019abfdcec95fe21d6cb2eb8debe78faf/kissdb.c
3 diff kissdb.c.orig kissdb.c

Listing 7.4 shows the most relevant parts of the diff.

Listing 7.4: kissdb.c diff (extract). The meta data is written and read as plain text using the
_insecure library functions. The other file input/output operations (for payload) are trans-
parently encrypted by the library. Also, the encryption_key is provided to the enclave
during setup with the open() call.

12 @@ -42,7 +44,8 @@
13 int mode,
14 unsigned long hash_table_size,
15 unsigned long key_size,
16 - unsigned long value_size)
17 + unsigned long value_size,
18 + uint8_t *encryption_key)
19 {
20 uint64_t tmp;
21 uint8_t tmp2[4];
22 @@ -74,16 +77,17 @@
23 }
24 if (ftello(db->f) < KISSDB_HEADER_SIZE) {
25 /* write header if not already present */
26 + /* header data is not sensitive -> unencrypted */
27 if ((hash_table_size)&&(key_size)&&(value_size)) {
28 if (fseeko(db->f,0,SEEK_SET)) { fclose(db->f); return KISSDB_ERROR_IO; }
29 tmp2[0] = 'K'; tmp2[1] = 'd'; tmp2[2] = 'B'; tmp2[3] = KISSDB_VERSION;
30 - if (fwrite(tmp2,4,1,db->f) != 1) { fclose(db->f); return KISSDB_ERROR_IO; }
31 + if (fwrite_insecure(tmp2,4,1,db->f) != 1) { fclose(db->f); return

↪→ KISSDB_ERROR_IO; }

The file content of original and hardened KISSDB files is compared in Appendix A.

Di�erent trusted/untrusted data structures: The database structure is used both inside and
outside of the enclave. Different fields are required inside and outside of the enclave.
The hash tables are held only in enclave memory to facilitate encrypting them in future.
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The untrusted wrapper on the other hand must hold the enclave ID. This is needed to
access E-calls and destroy the enclave. Listing 7.5 shows how the alternate structures
are defined using macros.

Listing 7.5: kissdb.h diff (extract).

26 typedef struct {
27 - unsigned long hash_table_size;
28 unsigned long key_size;
29 unsigned long value_size;
30 +
31 +#ifdef SGX_ENCLAVE
32 + // hash tables live inside enclave only
33 + unsigned long hash_table_size;
34 unsigned long hash_table_size_bytes;
35 unsigned long num_hash_tables;
36 uint64_t *hash_tables;
37 FILE *f;
38 -} KISSDB;
39 +#else
40 + // identifies the enclave associated with this KISSDB instance in the

↪→ untrusted application
41 + uint64_t eid;
42 +#endif
43 +} DLLEXPORT KISSDB;

Include encryption key in interface: The KISSDB interface is extended to pass the database
encryption key in the open call. This is the only modification to the external KISSDB
interface and is shown in Listing 7.6.

Listing 7.6: kissdb.h diff (extract).

51 -extern int KISSDB_open(
52 +extern DLLEXPORT int KISSDB_open(
53 KISSDB *db,
54 const char *path,
55 int mode,
56 unsigned long hash_table_size,
57 unsigned long key_size,
58 - unsigned long value_size);
59 + unsigned long value_size,
60 + uint8_t encryption_key[128]);

Passing the encryption key in the plain via the untrusted wrapper breaks security. This
functionality was explicitly excluded from the scope of this case study for simplicity.

7.3. Open Issues

Several important aspects were excluded from the scope of this case study. These are open
issues which break the security of the solution as it stands.
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7.4. Conclusion

A list of these and other issues follows:

Attestation and key provisioning: In a production setting, the consumer should attest the
enclaves identity and at the same time perform a key exchange with the enclave (see
section 4.2). With the exchanged key, the database encryption key could securely be
provisioned.

Ensure file integrity and freshness: Use cryptographic mechanisms to ensure file integrity.
Include monotonic counters provided by the Intel SDK to ensure freshness of the file.
If doing so, the possibility of migrating a database file between machines must be
considered.

Cryptographic hash function: KISSDB uses the djb2 hash function53 to compute key hashes.
This is not a cryptographic hash function. The hash tables (which are not encrypted)
thus may leak information about the keys, even if the key space is large and uniformly
distributed. It should be replaced with a cryptographic hash function.

Deterministic file layout: The file layout is deterministic. If values are added in the same
order, the file layout is always the same. If the consumer’s behaviour is known, this
opens the door for known plain text attacks. This could occur if a consumer writes a
fixed value upon first opening the database (e.g. version information).

7.4. Conclusion

The scope of the KISSDB study was limited in many regards. The case study was however
successful in two aspects. Firstly, it helped validate the usefulness of the helper library.
Secondly, the design alternatives for hardening applications gathered from related work
(section 6.2) could be applied.

53http://www.cse.yorku.ca/~oz/hash.html
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8. SQLite Case Study

The second case study examines hardening SQLite, “SQLite is a self-contained, high-reliability,
embedded, full-featured, public-domain, SQL database engine. SQLite is the most used
database engine in the world.”54 The results of this case study are limited to concept work
without any implementation.

The architecture and design decisions of SQLite are described in [28]. They are only briefly
explained in this chapter. Please refer to this book for further details.

SQLite was chosen for the following reasons:

Comparably small: Compared to KISSDB, SQLite is a production-level DBMS. In the world
of production-level DBMS however, SQLite is a comparably small piece of software. It is
not a stand alone server application but rather an embedded DBMS. “With all features
enabled, the library size can be less than 500KiB”.

Modularised: As described in [28, ch. 2.6], SQLite has a very modular architecture. Figure 8.1
shows the modules and a potential enclave border.

SQLite interface

Tokenizer

Parser

Code generator

Virtual machine

Tree

Pager

OS interface

POSIX libraries

SQL/API calls

internal byte code program

a) front end b) back end

Figure 8.1.: SQLite architecture. SQLite is divided into a front end and back end. The front end
translates incoming SQL statements (and SQLite API calls) into an internal byte code program.
The byte code is executed by the virtual machine – also called Virtual Database Engine (VDBE).
The VDBE is part of the back end, and operates on data through the tree module. The VDBE and
tree (shaded green) process the data and hold data and derived structures in memory. These two
modules are a prime candidate for enclave protection. Reprinted from [28].

54https://www.sqlite.org/
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8. SQLite Case Study

The Virtual Database Engine (VDBE) – as the virtual machine is also called – is at the
core of SQLite. The front end compiles a program for the VDBE, and the rest of the
back end is the data source.

8.1. Analysis

In order to find potential partitioning strategies for hardening SQLite, the run time behaviour
was analysed. Valgrind55 was used to record calls on function level. KCachegrind56 was used
to analyse, filter and export Valgrind’s output. Listing 8.1 shows the steps.

Listing 8.1: Record SQLite call graph. Valgrind and KCachegrind are used in combination to first
record and then analyse the call graph. An insert SQL statement is executed on a new database
through the SQLite command line interface.

1 # Run Valgrind to record SQLite's calls
2 $ valgrind --tool=callgrind ./sqlite3
3

4 # Execute SQLite instructions (create new database, insert and select).
5 sqlite3$ .open test.db
6 sqlite3$ CREATE TABLE tbl ( value TINYINT );
7 sqlite3$ INSERT INTO tbl VALUES ( 42 );
8 sqlite3$ SELECT * FROM tbl;
9

10 # Exit Using Ctrl+d
11 Ctrl+d
12

13 # Execute KCachegrind to analyze output
14 $ kcachegrind callgrind.out.<id>

Figure 8.2 shows the call graph after some additional post processing steps. Most notably,
the call graph nodes were shaded based on which SQLite module they belong to. The
functions (nodes) were mapped to their source or header file via a script. The SQLite source
files were manually mapped to the SQLite modules.

Not all files could be attributed to exactly one module. Nodes shaded grey can not clearly
be attributed to a module. The complete call graph is far too large to visualise. Figure 8.2
contains only nodes that incur at least one percent of the total cost as defined by Valgrind.57

A further visualisation of the same call graph in Appendix B is filtered not by cost, but by
depth. This is even larger, but can convey an overview of the module interaction through the
coloured shading.

55http://valgrind.org/
56http://kcachegrind.sourceforge.net/html/Home.html
57http://valgrind.org/docs/manual/cl-manual.html#cl-manual.functionality
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8.2. Concepts

8.2. Concepts

Based on the related work and SQLite run time analysis, two different hardening concepts
are proposed. They are not implemented due to time constraints.

1. Extract the VDBE and tree module into an enclave. This approach modifies the SQLite
code and extracts the security critical part. This separates the enclave by functionality
(section 6.2). Figure 8.1 shows the proposed boundaries of the enclave: it should include
the VDBE and tree module.

The premise is that it is sufficient and secure to protect the VDBE and the tree module.
The enclave would provide an interface byte code level. The caller would pass a byte
code program in an E-call. An in-depth analysis of the data flow is necessary to judge
the security implications of this separation.

The VDBE executes the compiled byte code program. It fetches entries from the tree
module, which in turn access the disk via the pager. The tree module is a good lower
boundary (in terms of the position in the architecture diagram), because it accesses
the disk at the level of pages. The tree module could be adapted to write and read
encrypted values, but pass the plain text on to the VDBE.

The VDBE then performs the actual processing, based on the byte code program. It
yields individual results row by row to the caller. The output has to be encrypted row
by row if the interface should remain the same. This leaks the number of result rows
for every call. The VDBE is a good upper boundary, because this keeps the entire front
end out of the TCB. This is significant, as the code generator alone contains 40 percent
of the entire SQLite code.[28] The front end is not involved in data processing, but only
responsible for byte code generation.

If the byte code is generated by an untrusted front end, it must be ensured that the byte
code is not harmful. Also, the output of the VDBE should not leak any information. It
should be encrypted to a secure channel established during attestation.

In reality, the modules are not so well separated as the high-level architecture diagram
would have readers believe. This can be seen in the call graph (Figure 8.2). Especially
calls back and forth between front end and back end are problematic for extracting an
enclave. While enclaves support O-calls and E-calls, the data that must be passed back
and forth is the root of the problem. If the untrusted front end must operate on the data
it must be passed as plain text, which may break security.

2. User-defined functions (UDFs) in enclaves. This solution leaves the KISSDB code base
untouched. Instead, sensitive data is processed in enclaves via UDFs.58 Figure 8.3 shows
the architecture of this solution.

The approach is very similar to VC3.[53] It uses separate processing components (UDFs
here, jobs in VC3) which can be plugged into the main processing engine. The approach
separates enclaves by functionality. There is one enclave per UDF.

58Registered via create_function: http://www.sqlite.org/c3ref/create_function.html
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8. SQLite Case Study

UDF enclave

1. decrypt
2. sum
3. encrypt

secure_sum

SQLite

xEnc yEnc
4a72c 94f2e

. . .

SELECT secure_sum(xEnc,yEnc) FROM tbl

a29c4

UDF

Figure 8.3.: SQLite hardening with user-defined functions (UDFs). A function is registered with a
SQLite connection using sqlite3_create_function. The registered function is an untrusted proxy
that delegates the call to the enclave. The enclave has been provisioned with the encryption key
for the data. It decrypts the operands and encrypts the result before passing it back. SQLite itself
handles only binary encrypted data.

Compared to VDBE and tree extraction, the advantages of the UDF approach are as
follows:

• This approach is far easier to implement. SQLite must not be modified. This
facilitates compatibility with future versions.

• The security guaranteed by this approach is easier to reason about, as the data
flow is very clear.

There are also drawbacks:

• Functions have to be re-implemented. SQLite has optimised processing implemen-
tations. They work well with the tree and pager module. None of these existing
operations can be used on encrypted data (for non-homomorphic encryption).

• UDFs can only operate at row level. Relational operations such as joins will not
work if non-deterministic encryption schemes are used. Aggregations can be
defined as UDFs (with an interface similar to reducers in functional programming).
A combination with the techniques used by other hardened databases in section 6.1
is possible (e.g. onion encryption).

• Performing many E-calls is inefficient. Even if the Intel SDK is not used, E-calls
still have a performance overhead. When processing a query that touches many
rows, the enclave will be called many times. The resulting context switches into
the enclave degrade performance.

• Information leakage at the field level. The enclave returns encrypted values. How-
ever, it is increasingly likely that some information is leaked. If the value space
of a field is small or non-uniformly distributed, information may be learned even
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8.3. SQLite in the Intel SGX SDK

from an encrypted value (take a binary field with deterministic encryption as an
extreme example).

8.3. SQLite in the Intel SGX SDK

The Intel SGX SDK for Linux, which is open source, also includes SQLite. The way in which
it is used by enclaves is different to the presented concepts and the related work. For the
specific use case of the SDK, it is a simple and interesting alternative.

Multiple references to SQLite can be found in the SDK’s code.59. Browsing the code, it
seems that SQLite is used to provide monotonic counters.60 The comments in the repository
often mention the CSME, which stands for Converged Security and Manageability Engine.
Monotonic counters are provided in hardware by the manageability engine.[32] They are a
limited resource. SQLite is apparently used to multiplex the hardware monotonic counters
into several virtual counters. This is a feature provided by Intel’s platform software (PSW).

The SQLite database is stored outside of the enclaves. For the counters, it is sufficient to
integrity protect the database. The code indicates that the data is stored in tree form. If stored
as a Merkle tree, it is sufficient to securely store the hash of the root node in the enclave. The
integrity of the entire tree can be verified from this root hash.

This approach leaves the payload visible as plain text. For the use case, integrity and replay
protection are sufficient. This allows for a far simpler solution than the concepts proposed in
this case study. The SDK approach however falls short of providing protected processing of
data, which is the goal of this thesis.

8.4. Conclusion

In this case study, two concepts to hardening SQLite were proposed. These were based on
a brief run-time analysis of SQLite’s module interaction. Also, related work provided an
inspiration for the UDF approach. Due to time constraints, neither of the approaches could
be evaluated in-depth or implemented. The unrelated approach of the SGX SDK was also
presented as an example of storing integrity-protected data outside enclaves.

59https://github.com/01org/linux-sgx/search?q=sqlite
60https://github.com/01org/linux-sgx/blob/1115c195cd60d5ab2b80c12d07e21663e5aa8030/psw/ae/

pse/pse_op/monotonic_counter_database_sqlite_rpdb.cpp
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9. Conclusion

This thesis showed how applications can best be hardened with the technology that is available
today. In a first step in chapter 2, trusted computing was identified as the correct approach
for the type of hardening in mind. Alternative approaches based on cryptography alone
are either too limited (garbled circuits) or not yet practical (fully homomorphic encryption,
encrypted CPU).

A major contribution of this thesis is the survey and systematic comparison of trusted
computing solutions in chapter 3. Intel SGX was identified as the best trusted computing
technology for hardening applications. The isolated TCB is kept small and the CPU’s full
processing power can be used. Developers can focus on their application and do not have to
provide their own trusted computing infrastructure as on e.g. TrustZone.

The thesis provided a high-level overview of SGX and summarised criticism and security
issues from research in chapter 4. A helper library for Intel’s SDK was developed (chapter 5)
and made available for public use.

Architectural design patterns were extracted from related work in chapter 6. These can
be re-used in future work. The case studies (chapter 7, chapter 8) provide a step-by-step
template for application hardening. The applied reasoning and helper library should prove
useful to developers targeting a similar problem. Two concepts were derived for the second
case study. Implementing one of these approaches is still open work. Also, attestation with
SGX still has to be explored. Only with remote attestation does trusted computing unfold its
full potential.

This thesis dealt with hardening legacy applications. Intel SGX provides the foundation
for entirely new and innovative applications not possible without trusted computing. This
line of research has vast potential.

Intel has made a serious investment in developing SGX. The success of SGX is still far from
decided – too much is still unclear. Intel has set itself up in a good position in case SGX
succeeds. But judging from the criticism being voiced and the limited amount of applications
it may have pushed it’s luck too far. Further commercial solutions comparable to SGX can be
expected to be developed by Intel’s competition. Once that time comes, research comparing
these solutions will be of interest. Apart from the security aspects and development model,
the factor that decides over the winning solution might well be the business model.
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A. KISSDB Database Files

Listing A.1: Plain KISSDB database file. The file is shown in hex editor view, with the binary content
on the left, and the ASCII characters on the right. Both meta data and payload are in plain text.

1 Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
2

3 00000000 4B 64 42 02 00 04 00 00 00 00 00 00 08 00 00 00 KdB............. // header:
↪→ KDB2, hash table size (0004...), key size (08...) = 8 byte

4 00000010 00 00 00 00 40 00 00 00 00 00 00 00 0C 14 05 00 ....@........... // header:
↪→ value size (40...) = 64 byte

5 00000020 00 00 00 00 5C 0A 07 00 00 00 00 00 4C 4C 00 00 ....\.......LL.. // BEGIN
↪→ first hash table page (incl. 0C 14 05 00 in previous line)

6 00000030 00 00 00 00 CC 3F 01 00 00 00 00 00 4C F6 03 00 ....I?......Lo..
7 00000040 00 00 00 00 9C EC 05 00 00 00 00 00 EC E2 07 00 ....oei......ia..
8 ...
9 00001030 00 00 00 00 7C 7B 06 00 00 00 00 00 DC 5E 00 00 ....|{......U^..

10 00001040 00 00 00 00 24 20 00 00 00 00 00 00 64 47 03 00 ....$ ......dG.. // hash
↪→ table entry for item with key 0 is 24 20 , at offset 1044 (as expected)

11 00001050 00 00 00 00 BC 5D 05 00 00 00 00 00 0C 54 07 00 .... 1/4 ].......T..
12 ...
13 00001FF0 00 00 00 00 7C 3B 04 00 00 00 00 00 CC 31 06 00 ....|;......I1..
14 00002000 00 00 00 00 E4 65 00 00 00 00 00 00 2C 27 00 00 ....ae......,'..
15 00002010 00 00 00 00 AC DD 02 00 00 00 00 00 DC 70 00 00 ....!Y......Up.. // END

↪→ first hash table page, last entry is offset of next hash table page DC 70 ->
↪→ 70 DC (little endian)

16 00002020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ // BEGIN
↪→ first entry at 2024: key (0), value ([0,0,0,0,0,0,0,0])

17 00002030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ // entry is
↪→ 72byte (0x48 hex) long, next entry starts at 0x2024 + 0x48 = 0x206C

18 00002040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ // 72 byte:
↪→ 9 64-bit integers (1 key, 8 value) -> 9 * 64 / 8 = 72byte

19 00002050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
20 00002060 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 ................ // BEGIN

↪→ second entry
21 00002070 00 00 00 00 01 00 00 00 00 00 00 00 01 00 00 00 ................
22 00002080 00 00 00 00 01 00 00 00 00 00 00 00 01 00 00 00 ................
23 00002090 00 00 00 00 01 00 00 00 00 00 00 00 01 00 00 00 ................
24 000020A0 00 00 00 00 01 00 00 00 00 00 00 00 01 00 00 00 ................
25 000020B0 00 00 00 00 02 00 00 00 00 00 00 00 02 00 00 00 ................ // BEGIN

↪→ third entry
26 ...
27 000070C0 00 00 00 00 1E 01 00 00 00 00 00 00 1E 01 00 00 ................
28 000070D0 00 00 00 00 1E 01 00 00 00 00 00 00 C4 64 05 00 ............Ad.. // BEGIN

↪→ second hash table page at offset 70DC (as linked from first page)
29 000070E0 00 00 00 00 14 5B 07 00 00 00 00 00 0C BD 00 00 .....[....... 1/2 ..
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30 000070F0 00 00 00 00 8C B0 01 00 00 00 00 00 04 47 04 00 ....OE?.......G..
31 ...

Listing A.2:Hardened KISSDB database file. The file is shown in hex editor view, with the binary
content on the left, and the ASCII characters on the right. The payload is encrypted, while the meta
data is in plain text.

1 Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
2

3 00000000 4B 64 42 02 00 04 00 00 00 00 00 00 08 00 00 00 KdB............. // header:
↪→ identical (unencrypted)

4 00000010 00 00 00 00 40 00 00 00 00 00 00 00 7C B6 07 00 ....@.......|?..
5 00000020 00 00 00 00 AC FB 0A 00 00 00 00 00 BC 69 00 00 ....!u...... 1/4 i..
6 // BEGIN first hash table page (unencrypted)
7 00000030 00 00 00 00 DC D4 01 00 00 00 00 00 3C DA 05 00 ....UO......<U..
8 00000040 00 00 00 00 6C 1F 09 00 00 00 00 00 9C 64 0C 00 ....l.......oed..
9 ...

10 00001030 00 00 00 00 8C 0D 0A 00 00 00 00 00 AC 88 00 00 ....OE.......!^..
11 00001040 00 00 00 00 24 20 00 00 00 00 00 00 14 CC 04 00 ....$ .......I..
12 // hash table entry for first inserted item has not changed (offset remains the same):

↪→ 24 20
13 00001050 00 00 00 00 4C 31 08 00 00 00 00 00 7C 76 0B 00 ....L1......|v..
14 ...
15 00001FF0 00 00 00 00 8C 4D 06 00 00 00 00 00 BC 92 09 00 ....OEM...... 1/4 '..
16 00002000 00 00 00 00 64 94 00 00 00 00 00 00 DC 2B 00 00 ....d"......U+..
17 00002010 00 00 00 00 3C 31 04 00 00 00 00 00 AC A6 00 00 ....<1......!|..
18 // END first hash table page
19 00002020 00 00 00 00 7E 6E DF 1F 2C 34 F5 4E BD CD D4 66 ....~nss.,4oN 1/2 IOf
20 // BEGIN first entry at 2024: ctr_nonce=~nss.,4oN, data= 1/2 IOf...
21 00002030 D4 53 B7 C4 8A 74 FB 5A 18 67 71 65 1B 80 A9 AD OS.AStuZ.gqe.EUR(C).
22 // encrypted key (incl. ctr_nonce) is 16byte (0x10 hex) long, encrypted value starts

↪→ at 0x2024 + 0x10 = 0x2034
23 00002040 35 AF 88 7B 11 A6 E0 C4 A5 58 3C 61 4C EF FF DE 5?^{.|aAJPYX<aLiyTH
24 ...
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